Novel therapeutic targets in Waldenstrom macroglobulinemia

Best Practice & Research Clinical Haematology - Tập 29 - Trang 216-228 - 2016
Aneel Paulus1, Sikander Ailawadhi2, Asher Chanan-Khan2
1Mayo Clinic Jacksonville, Department of Cancer Biology and Division of Hematology and Oncology, United States
2Mayo Clinic Jacksonville, Division of Hematology and Oncology, United States

Tài liệu tham khảo

Ansell, 2010, Diagnosis and management of Waldenstrom macroglobulinemia: Mayo stratification of macroglobulinemia and risk-adapted therapy (mSMART) guidelines, Mayo Clin Proc Mayo Clin, 85, 824, 10.4065/mcp.2010.0304 Treon, 2009, Primary therapy of Waldenstrom macroglobulinemia with bortezomib, dexamethasone, and rituximab: WMCTG clinical trial 05-180, J Clin Oncol Off J Am Soc Clin Oncol, 27, 3830, 10.1200/JCO.2008.20.4677 Treon, 2015, Ibrutinib in previously treated Waldenstrom's macroglobulinemia, N Engl J Med, 372, 1430, 10.1056/NEJMoa1501548 Ngo, 2011, Oncogenically active MYD88 mutations in human lymphoma, Nature, 470, 115, 10.1038/nature09671 Lin, 2010, Regulation of adaptive immunity by the innate immune system, Science, 327, 291, 10.1126/science.1183021 Lin, 2010, Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling, Nature, 465, 885, 10.1038/nature09121 Treon, 2012, MYD88 L265P somatic mutation in Waldenstrom's macroglobulinemia, N Engl J Med, 367, 826, 10.1056/NEJMoa1200710 Ansell, 2014, Activation of TAK1 by MYD88 L265P drives malignant B-cell growth in non-Hodgkin lymphoma, Blood Cancer J, 4, 10.1038/bcj.2014.4 Liu, 2016, Targeting myddosome assembly in Waldenstrom macroglobulinaemia, Br J Haematol, 10.1111/bjh.14103 Loiarro, 2013, Targeting the Toll-like receptor/interleukin 1 receptor pathway in human diseases: rational design of MyD88 inhibitors, Clin Lymphoma Myeloma Leuk, 13, 222, 10.1016/j.clml.2013.02.003 Nelde, 2015, Identification and characterization of HLA class I-restricted MYD88 L265P-derived peptides as tumor-specific targets for immunotherapy, Blood, 126, 2750, 10.1182/blood.V126.23.2750.2750 Kelly, 2015, Selective interleukin-1 receptor-associated kinase 4 inhibitors for the treatment of autoimmune disorders and lymphoid malignancy, J Exp Med, 212, 2189, 10.1084/jem.20151074 Yang, 2013, A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenstrom macroglobulinemia, Blood, 122, 1222, 10.1182/blood-2012-12-475111 Vajda, 2015, Abstract 785: IRAK4 inhibitors display synergistic activity when combined with BTK or PI3K inhibitors in B cell lymphomas, Cancer Res, 75, 785, 10.1158/1538-7445.AM2015-785 Mocsai, 2010, The SYK tyrosine kinase: a crucial player in diverse biological functions, Nat Rev Immunol, 10, 387, 10.1038/nri2765 Geahlen, 2014, Getting Syk: spleen tyrosine kinase as a therapeutic target, Trends Pharmacol Sci, 35, 414, 10.1016/j.tips.2014.05.007 Cheng, 2014, BTK inhibition targets in vivo CLL proliferation through its effects on B-cell receptor signaling activity, Leukemia, 28, 649, 10.1038/leu.2013.358 Hashimoto, 1998, Involvement of guanosine triphosphatases and phospholipase C-gamma2 in extracellular signal-regulated kinase, c-Jun NH2-terminal kinase, and p38 mitogen-activated protein kinase activation by the B cell antigen receptor, J Exp Med, 188, 1287, 10.1084/jem.188.7.1287 Suzuki, 2003, PI3K and Btk differentially regulate B cell antigen receptor-mediated signal transduction, Nat Immunol, 4, 280, 10.1038/ni890 Kuiatse, 2015, Targeting the spleen tyrosine kinase with fostamatinib as a strategy against Waldenstrom macroglobulinemia, Clin Cancer Res, 21, 2538, 10.1158/1078-0432.CCR-14-1462 Argyropoulos, 2016, Clonal B cells in Waldenstrom's macroglobulinemia exhibit functional features of chronic active B-cell receptor signaling, Leukemia, 30, 1116, 10.1038/leu.2016.8 McCubrey, 2007, Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance, Biochim Biophys Acta, 1773, 1263, 10.1016/j.bbamcr.2006.10.001 Bollag, 2012, Vemurafenib: the first drug approved for BRAF-mutant cancer, Nat Rev Drug Discov, 11, 873, 10.1038/nrd3847 Lugowska, 2015, Trametinib: a MEK inhibitor for management of metastatic melanoma, Onco Targets Ther, 8, 2251 Heuck, 2016, Inhibiting MEK in MAPK pathway-activated myeloma, Leukemia, 30, 976, 10.1038/leu.2015.208 Chitta, 2013, Development and characterization of a novel human Waldenstrom macroglobulinemia cell line: RPCI-WM1, Roswell Park Cancer Institute – Waldenstrom macroglobulinemia 1, Leuk Lymphoma, 54, 387, 10.3109/10428194.2012.713481 Paulus, 2015, Silico modeling of oncogenic drivers in Waldenstrom macroglobulinemia to assess additional therapeutic targets within the BCR signaling pathway identifies MEK1/2 as a target: potential therapeutic role of binimetinib, Blood, 126, 1279, 10.1182/blood.V126.23.1279.1279 Palazzo, 2000, Centrosome maturation, Curr Top Dev Biol, 49, 449, 10.1016/S0070-2153(99)49021-0 Mahen, 2012, Pattern formation in centrosome assembly, Curr Opin Cell Biol, 24, 14, 10.1016/j.ceb.2011.12.012 Friedberg, 2014, Phase II study of alisertib, a selective Aurora A kinase inhibitor, in relapsed and refractory aggressive B- and T-cell non-Hodgkin lymphomas, J Clin Oncol Off J Am Soc Clin Oncol, 32, 44, 10.1200/JCO.2012.46.8793 Doudican, 2015, Personalization of cancer treatment using predictive simulation, J Transl Med, 13, 43, 10.1186/s12967-015-0399-y Paulus, 2015, Aurora kinase is a therapeutic target in ibrutinib-resistant Waldenstrom macroglobulinemia: in-silico target identification and in-vitro validation, Blood, 126, 2754, 10.1182/blood.V126.23.2754.2754 Adams, 2003, The proteasome: structure, function, and role in the cell, Cancer Treat Rev, 29, 3, 10.1016/S0305-7372(03)00081-1 Treon, 2007, Multicenter clinical trial of bortezomib in relapsed/refractory Waldenstrom's macroglobulinemia: results of WMCTG Trial 03-248, Clin Cancer Res, 13, 3320, 10.1158/1078-0432.CCR-06-2511 Ghobrial, 2010, Phase II trial of weekly bortezomib in combination with rituximab in relapsed or relapsed and refractory Waldenstrom macroglobulinemia, J Clin Oncol Off J Am Soc Clin Oncol, 28, 1422, 10.1200/JCO.2009.25.3237 D'Arcy, 2011, Inhibition of proteasome deubiquitinating activity as a new cancer therapy, Nat Med, 17, 1636, 10.1038/nm.2536 Tian, 2014, A novel small molecule inhibitor of deubiquitylating enzyme USP14 and UCHL5 induces apoptosis in multiple myeloma and overcomes bortezomib resistance, Blood, 123, 706, 10.1182/blood-2013-05-500033 Chitta, 2015, Targeted inhibition of the deubiquitinating enzymes, USP14 and UCHL5, induces proteotoxic stress and apoptosis in Waldenstrom macroglobulinaemia tumour cells, Br J Haematol, 169, 377, 10.1111/bjh.13304 Paulus, 2015, Identification of USP14 and UCHL5 as druggable oncotargets in ibrutinib-resistant mantle cell lymphoma, Blood, 126, 1557, 10.1182/blood.V126.23.1557.1557 D'Arcy, 2012, Proteasome deubiquitinases as novel targets for cancer therapy, Int J Biochem Cell Biol, 44, 1729, 10.1016/j.biocel.2012.07.011 Paulus, 2015, VLX1570, a first in class Dub inhibitor, modulates BCR signaling and CXCR4 expression and demonstrates significant in vivo antitumor activity in a murine model of human Waldenstrom macroglobulinemia, Blood, 126, 703, 10.1182/blood.V126.23.703.703 Wang, 2014, Toll-like receptors and cancer: MYD88 mutation and inflammation, Front Immunol, 5, 367, 10.3389/fimmu.2014.00367 Lim, 2013, Abstract 2332: oncogenic MYD88 mutants require Toll-like receptors, Cancer Res, 73, 2332, 10.1158/1538-7445.AM2013-2332 Paulus, 2014, Therapeutic sensitivity of CD20- Waldenströms macroglobulinemia cells is determined by underlying genomic and epigenetic events, Blood, 124, 3115, 10.1182/blood.V124.21.3115.3115 Thomas, 2015, Preliminary results from a phase 1/2, open-label, dose-escalation clinical trial of IMO-8400 in patients with relapsed or refractory Waldenstrom's macroglobulinemia, Blood, 126, 1540, 10.1182/blood.V126.23.1540.1540 Bryan, 2015, Blocking tumor escape in hematologic malignancies: the anti-PD-1 strategy, Blood Rev, 29, 25, 10.1016/j.blre.2014.09.004 Medina, 2016, PD-1 pathway inhibitors: immuno-oncology agents for restoring antitumor immune responses, Pharmacotherapy, 36, 317, 10.1002/phar.1714 Ansell, 2015, PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma, N Engl J Med, 372, 311, 10.1056/NEJMoa1411087 Ansell, 2014, PD-1 is expressed on B-cells in Waldenstrom macroglobulinemia and promotes malignant cell viability and proliferation, Blood, 124, 3015, 10.1182/blood.V124.21.3015.3015 Malavasi, 2008, Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology, Physiol Rev, 88, 841, 10.1152/physrev.00035.2007 van de Donk, 2016, Monoclonal antibodies targeting CD38 in hematological malignancies and beyond, Immunol Rev, 270, 95, 10.1111/imr.12389 Malavasi, 2011, CD38 and chronic lymphocytic leukemia: a decade later, Blood, 118, 3470, 10.1182/blood-2011-06-275610 Jiang, 2016, SAR650984 directly induces multiple myeloma cell death via lysosomal-associated and apoptotic pathways, which is further enhanced by pomalidomide, Leukemia, 30, 399, 10.1038/leu.2015.240 Sondergeld, 2015, Monoclonal antibodies in myeloma, Clin Adv Hematol Oncol, 13, 599 Rajkumar, 2016, Daratumumab in multiple myeloma, Lancet, 387, 1490, 10.1016/S0140-6736(15)01226-X Paulus, 2015, Immunophenotyping of Waldenstroms macroglobulinemia cell lines reveals distinct patterns of surface antigen expression: potential biological and therapeutic implications, PloS One, 10, 10.1371/journal.pone.0122338 Scheuermann, 1995, CD19 antigen in leukemia and lymphoma diagnosis and immunotherapy, Leuk Lymphoma, 18, 385, 10.3109/10428199509059636 Maude, 2015, CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia, Blood, 125, 4017, 10.1182/blood-2014-12-580068 Smith, 2014, A systemic xenograft model of Waldenström's macroglobulinemia demonstrates the potent anti-tumor effect of second generation CD19 directed chimeric antigen receptor modified T cells in this disease, Blood, 124, 4484, 10.1182/blood.V124.21.4484.4484 Das, 2015, Selective inhibitors of nuclear export (SINE) in hematological malignancies, Exp Hematol Oncol, 4, 7, 10.1186/s40164-015-0002-5 Puente, 2011, Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia, Nature, 475, 101, 10.1038/nature10113 Tai, 2014, CRM1 inhibition induces tumor cell cytotoxicity and impairs osteoclastogenesis in multiple myeloma: molecular mechanisms and therapeutic implications, Leukemia, 28, 155, 10.1038/leu.2013.115 Gutierrez, 2013, Anti tumor activity of selinexor (KPT-330), a first-in-class oral selective inhibitor of nuclear export (SINE) XPO1/CRM1 antagonist in patients (pts) with relapsed/refractory multiple myeloma (MM) or Waldenstrom's macroglobulinemia (WM), Blood, 122, 1942 Treon, 2014, Carfilzomib, rituximab, and dexamethasone (CaRD) treatment offers a neuropathy-sparing approach for treating Waldenstrom's macroglobulinemia, Blood, 124, 503, 10.1182/blood-2014-03-566273 Siegel, 2014, Updated results from a multicenter, open-label, dose-escalation phase 1b/2 study of single-agent oprozomib in patients with Waldenström macroglobulinemia (WM), Blood, 124, 1715, 10.1182/blood.V124.21.1715.1715 Tam, 2015, The BTK inhibitor, Bgb-3111, is safe, tolerable, and highly active in patients with relapsed/refractory B-cell malignancies: initial report of a phase 1 first-in-human trial, Blood, 126, 832, 10.1182/blood.V126.23.832.832 Byrd, 2016, Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia, N Engl J Med, 374, 323, 10.1056/NEJMoa1509981 Advani, 2011, Pharmacokinetic evaluation of oblimersen sodium for the treatment of chronic lymphocytic leukemia, Expert Opin Drug Metab Toxicol, 7, 765, 10.1517/17425255.2011.579105 O'Brien, 2007, Randomized phase III trial of fludarabine plus cyclophosphamide with or without oblimersen sodium (Bcl-2 antisense) in patients with relapsed or refractory chronic lymphocytic leukemia, J Clin Oncol Off J Am Soc Clin Oncol, 25, 1114, 10.1200/JCO.2006.07.1191 Chanan-Khan, 2009, Phase III randomised study of dexamethasone with or without oblimersen sodium for patients with advanced multiple myeloma, Leuk Lymphoma, 50, 559, 10.1080/10428190902748971 Roberts, 2016, Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia, N Engl J Med, 374, 311, 10.1056/NEJMoa1513257 Paulus, 2014, AT-101 downregulates BCL2 and MCL1 and potentiates the cytotoxic effects of lenalidomide and dexamethasone in preclinical models of multiple myeloma and Waldenstrom macroglobulinaemia, Br J Haematol, 164, 352, 10.1111/bjh.12633 Gerecitano, 2015, A phase 1 study of venetoclax (ABT-199/GDC-0199) monotherapy in patients with relapsed/refractory non-Hodgkin lymphoma, Blood, 126, 254, 10.1182/blood.V126.23.254.254