Novel synthesis and properties of hydrogen-free detonation nanodiamond
Tài liệu tham khảo
Shenderova, 2002, Carbon nanostructures, Crit. Rev. Solid State Mater. Sci., 27, 227, 10.1080/10408430208500497
Reddy, 2009, In situ self-organization of carbon black–polyaniline composites from nanospheres to nanorods, Synth. Met., 159, 1934, 10.1016/j.synthmet.2009.06.018
Reddy, 2009, Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles, Synth. Met., 159, 595, 10.1016/j.synthmet.2008.11.030
Reddy, 2008, A new one-step synthesis method for coating multi-walled carbon nanotubes with cuprous oxide nanoparticles, Scripta Mater., 58, 1010, 10.1016/j.scriptamat.2008.01.047
Reddy, 2006, Synthesis of metal (Fe or Pd)/alloy (Fe–Pd)-nanoparticles embedded multiwall carbon nanotube/sulfonated polyaniline composites by γ-irradiation, J. Polymer Sci. A: Polymer Chem., 44, 3355
Khan, 2016, Polymer brush synthesis on surface modified carbon nanotubes via in situ emulsion polymerization, Colloid Polym. Sci., 294, 1599, 10.1007/s00396-016-3922-7
Venkateswarlu, 2016, Bioinspired 2D-carbon flakes and Fe3O4 nanoparticles composite for arsenite removal, ACS Appl. Mater. Interfaces, 8, 23876, 10.1021/acsami.6b03583
Son, 2016, Compatibility of thermally reduced graphene with polyesters, J. Macromol. Sci. Part B: Phys., 55, 1099, 10.1080/00222348.2016.1242529
Hassan, 2014, Edge-enriched graphene quantum dots for enhanced photo-luminescence and supercapacitance, Nanoscale, 6, 11988, 10.1039/C4NR02365J
2014
2014
Dolmatov, 2007, Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications, Russ. Chem. Rev., 76, 339, 10.1070/RC2007v076n04ABEH003643
Nesvizhevsky, 2002, Interaction of neutrons with nanoparticles, Phys. Atom. Nucl., 65, 400, 10.1134/1.1465480
Nesvizhevsky, 2007, Nanoparticles as a possible moderator for an ultra cold neutron source, Int. J. Nanosci., 6, 485, 10.1142/S0219581X07005073
Krylov, 2011, Study of bound hydrogen in powders of diamond nanoparticles, Crystallogr. Rep., 56, 1186, 10.1134/S1063774511070169
Mironov, 2004, From analysis of the structure of ultrafine diamond to the problem of its formation kinetics, Combust. Expl. Shock Waves, 40, 473, 10.1023/B:CESW.0000033571.82326.6a
Danilenko, 2005, Specific features of synthesis of detonation nanodiamonds, Combust. Expl. Shock Waves, 41, 577, 10.1007/s10573-005-0072-5
Danilenko, 2017, Coagulation of carbon clusters in a detonation wave, Combust. Expl. Shock Waves, 53, 93, 10.1134/S0010508217010130
Mochalin, 2012, The properties and applications of nanodiamonds, Nat. Nanotechnol., 7, 11, 10.1038/nnano.2011.209
Furman, 2014, Decomposition of condensed phase energetic materials: interplay between uni- and bimolecular mechanisms, J. Amer. Chem. Soc., 136, 4192, 10.1021/ja410020f
Li, 2017, Multistage reaction pathways in detonating RDX, AIP Conference Proceedings, 1793, 030007, 10.1063/1.4971465
Bastea, 2017, Nanocarbon condensation in detonation, Sci. Rep., 7, 42151, 10.1038/srep42151
Meyer, 2007
Imhovik, 2002, Thermodynamics and thermochemistry of explosive and detonation processes, vol. 1
Dolgoborodov, 2014, Detonation performance of high-dense BTF charges, J. Phys. Conf. Ser, 500, 052010, 10.1088/1742-6596/500/5/052010
Tolochko, 2007, Physical-chemical model of processes at detonation synthesis of nanodiamond, Diamond Relat. Mater, 16, 2014, 10.1016/j.diamond.2007.09.002
Batsanov, 2015, Synthesis and properties of hydrogen-free detonation diamond, Propell. Explos. Pyrotech, 40, 39, 10.1002/prep.201400039
Yu, 1993, Formation of diamond from the liquid-phase of carbon, Combust. Explos. Shock Waves, 29, 542, 10.1007/BF00782983
Chugunova, 2012, First synthesis of benzotrifuroxan at low temperature, Propell. Explos. Pyrotech, 37, 390, 10.1002/prep.201200080
Batsanov, 2012, Giant dielectric permittivity of detonation-produced nanodiamond is caused by water, J. Mater. Chem., 22, 11166, 10.1039/c2jm30836c
Swindall, 1988, Improvements to the CHN performance of a Carlo-Erba 1106 elemental analyser, Fresenius Z. Anal. Chem., 331, 730, 10.1007/BF01105609
Jeanguillaume, 1989, Spectrum-image: the next step in EELS digital acquisition a processing, Ultramicroscopy, 28, 252, 10.1016/0304-3991(89)90304-5
Batsanov, 2012, Shock synthesis of single crystals, Propell. Explos. Pyrotech, 38, 169, 10.1002/prep.201200169
Apperley, 2012
Polyanskiy, 2015, Determining the content and binding energy of hydrogen in diamond films, Tech. Phys. Lett., 41, 540, 10.1134/S1063785015060127
Li, 2007, X-ray diffraction patterns of graphite and turbostratic carbon, Carbon, 45, 1686, 10.1016/j.carbon.2007.03.038
Blanton, 2012, X-ray diffraction characterization of polymer intercalated graphite oxide, Powder Diffr., 27, 104, 10.1017/S0885715612000292
Ginzburg, 2005, X-ray diffraction analysis of C60 fullerene powder and fullerene soot, Tech. Phys., 50, 1458, 10.1134/1.2131953
Fahmy, 1999, Possible evidence for the stabilization of β-carbon nitride by high-energy ball milling, J. Mater. Res., 14, 2488, 10.1557/JMR.1999.0334
Cebik, 2013, Raman spectroscopy study of the nanodiamond-to-carbon onion transformation, Nanotechnology, 24, 205703, 10.1088/0957-4484/24/20/205703
Evans, 1979, Changes produced by high temperature treatment of diamond, 403
Batsanov, 2009, Thermodynamic reasons for delamination of molecular mixtures under pressure and detonation synthesis of diamond, Russ. J. Phys. Chem., 83, 1419, 10.1134/S0036024409080299
Zhang, 2013, Effects of hydrogen impurity on diamond crystal growth process, Int. J. Refractory Metals & Hard Materials, 38, 111, 10.1016/j.ijrmhm.2013.01.009
Goss, 2003, Theory of hydrogen in diamond, J. Phys. Cond. Matter, 15, R551, 10.1088/0953-8984/15/17/201
Briddon, 1988, Hydrogen in diamond, J. Phys. C Solid State Phys., 21, L1027, 10.1088/0022-3719/21/30/005
Ozawa, 2007, Preparation and behavior of brownish, clear nanodiamond colloids, Adv. Mater, 19, 1201, 10.1002/adma.200601452
Batsanov, 2014, Water shells of diamond nanoparticles in colloidal solutions, Appl. Phys. Lett., 104, 133105, 10.1063/1.4870464
Fang, 2009, Nonaromatic core-shell structure of nanodiamond from solid-state NMR spectroscopy, J. Am. Chem. Soc., 131, 1426, 10.1021/ja8054063
Belobrov, 2001, Paramagnetic properties of nanodiamond, Dokl. Phys., 46, 459, 10.1134/1.1390396
Kulakova, 2010, The structure of chemically modified detonation-synthesized nanodiamond particles, Nanotechnologies in Russia, 5, 474, 10.1134/S1995078010070074
Batsanov, 2012
Feoktistov, 2015, Evolution of the morphology of diamond particles and mechanism of their growth, Phys. Solid State, 57, 2184, 10.1134/S1063783415110104
Sun, 2000, Preferential oxidation of diamond {111}, J. Phys. D Appl. Phys., 33, 2196, 10.1088/0022-3727/33/17/316
Howe, 2000, The evolution of microstructure of CVD diamond by oxidation, Carbon, 38, 929, 10.1016/S0008-6223(00)00032-4
Etzold, 2014, Layer-by-layer oxidation for decreasing the size of detonation nanodiamond, Chem. Mater.26, 3479, 10.1021/cm500937r
Jiang, 1995, FTIR study of ultradispersed diamond powder synthesised by explosive detonation, Carbon, 33, 1663, 10.1016/0008-6223(95)00115-1
Tatsii, 2009, Structure and properties of Dalan detonation diamonds, Comb. Expl. Shock Waves, 45, 95, 10.1007/s10573-009-0013-9
Batsanov, 2016, On the nature of fibres grown from nanodiamond colloids, Mater. Chem. Phys., 173, 325, 10.1016/j.matchemphys.2016.02.019