Novel synthesis and properties of hydrogen-free detonation nanodiamond

Materials Chemistry and Physics - Tập 216 - Trang 120-129 - 2018
Stepan S. Batsanov1, Alexander N. Osavchuk2, Stepan P. Naumov2, Sergey M. Gavrilkin1, Anatoly S. Leskov1, Budhika G. Mendis3, Andrew Beeby4, Andrei S. Batsanov4
1National Research Institute of Physical-Technical Measurements, Moscow Region 141570, Russia
2Federal State Unitary Enterprise Soyuz, Moscow Region 140090, Russia
3Physics Department, Durham University, Science Site, South Road, DH1 3LE, UK
4Chemistry Department, Durham University, Science Site, South Road, DH1 3LE, UK

Tài liệu tham khảo

Shenderova, 2002, Carbon nanostructures, Crit. Rev. Solid State Mater. Sci., 27, 227, 10.1080/10408430208500497 Reddy, 2009, In situ self-organization of carbon black–polyaniline composites from nanospheres to nanorods, Synth. Met., 159, 1934, 10.1016/j.synthmet.2009.06.018 Reddy, 2009, Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles, Synth. Met., 159, 595, 10.1016/j.synthmet.2008.11.030 Reddy, 2008, A new one-step synthesis method for coating multi-walled carbon nanotubes with cuprous oxide nanoparticles, Scripta Mater., 58, 1010, 10.1016/j.scriptamat.2008.01.047 Reddy, 2006, Synthesis of metal (Fe or Pd)/alloy (Fe–Pd)-nanoparticles embedded multiwall carbon nanotube/sulfonated polyaniline composites by γ-irradiation, J. Polymer Sci. A: Polymer Chem., 44, 3355 Khan, 2016, Polymer brush synthesis on surface modified carbon nanotubes via in situ emulsion polymerization, Colloid Polym. Sci., 294, 1599, 10.1007/s00396-016-3922-7 Venkateswarlu, 2016, Bioinspired 2D-carbon flakes and Fe3O4 nanoparticles composite for arsenite removal, ACS Appl. Mater. Interfaces, 8, 23876, 10.1021/acsami.6b03583 Son, 2016, Compatibility of thermally reduced graphene with polyesters, J. Macromol. Sci. Part B: Phys., 55, 1099, 10.1080/00222348.2016.1242529 Hassan, 2014, Edge-enriched graphene quantum dots for enhanced photo-luminescence and supercapacitance, Nanoscale, 6, 11988, 10.1039/C4NR02365J 2014 2014 Dolmatov, 2007, Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications, Russ. Chem. Rev., 76, 339, 10.1070/RC2007v076n04ABEH003643 Nesvizhevsky, 2002, Interaction of neutrons with nanoparticles, Phys. Atom. Nucl., 65, 400, 10.1134/1.1465480 Nesvizhevsky, 2007, Nanoparticles as a possible moderator for an ultra cold neutron source, Int. J. Nanosci., 6, 485, 10.1142/S0219581X07005073 Krylov, 2011, Study of bound hydrogen in powders of diamond nanoparticles, Crystallogr. Rep., 56, 1186, 10.1134/S1063774511070169 Mironov, 2004, From analysis of the structure of ultrafine diamond to the problem of its formation kinetics, Combust. Expl. Shock Waves, 40, 473, 10.1023/B:CESW.0000033571.82326.6a Danilenko, 2005, Specific features of synthesis of detonation nanodiamonds, Combust. Expl. Shock Waves, 41, 577, 10.1007/s10573-005-0072-5 Danilenko, 2017, Coagulation of carbon clusters in a detonation wave, Combust. Expl. Shock Waves, 53, 93, 10.1134/S0010508217010130 Mochalin, 2012, The properties and applications of nanodiamonds, Nat. Nanotechnol., 7, 11, 10.1038/nnano.2011.209 Furman, 2014, Decomposition of condensed phase energetic materials: interplay between uni- and bimolecular mechanisms, J. Amer. Chem. Soc., 136, 4192, 10.1021/ja410020f Li, 2017, Multistage reaction pathways in detonating RDX, AIP Conference Proceedings, 1793, 030007, 10.1063/1.4971465 Bastea, 2017, Nanocarbon condensation in detonation, Sci. Rep., 7, 42151, 10.1038/srep42151 Meyer, 2007 Imhovik, 2002, Thermodynamics and thermochemistry of explosive and detonation processes, vol. 1 Dolgoborodov, 2014, Detonation performance of high-dense BTF charges, J. Phys. Conf. Ser, 500, 052010, 10.1088/1742-6596/500/5/052010 Tolochko, 2007, Physical-chemical model of processes at detonation synthesis of nanodiamond, Diamond Relat. Mater, 16, 2014, 10.1016/j.diamond.2007.09.002 Batsanov, 2015, Synthesis and properties of hydrogen-free detonation diamond, Propell. Explos. Pyrotech, 40, 39, 10.1002/prep.201400039 Yu, 1993, Formation of diamond from the liquid-phase of carbon, Combust. Explos. Shock Waves, 29, 542, 10.1007/BF00782983 Chugunova, 2012, First synthesis of benzotrifuroxan at low temperature, Propell. Explos. Pyrotech, 37, 390, 10.1002/prep.201200080 Batsanov, 2012, Giant dielectric permittivity of detonation-produced nanodiamond is caused by water, J. Mater. Chem., 22, 11166, 10.1039/c2jm30836c Swindall, 1988, Improvements to the CHN performance of a Carlo-Erba 1106 elemental analyser, Fresenius Z. Anal. Chem., 331, 730, 10.1007/BF01105609 Jeanguillaume, 1989, Spectrum-image: the next step in EELS digital acquisition a processing, Ultramicroscopy, 28, 252, 10.1016/0304-3991(89)90304-5 Batsanov, 2012, Shock synthesis of single crystals, Propell. Explos. Pyrotech, 38, 169, 10.1002/prep.201200169 Apperley, 2012 Polyanskiy, 2015, Determining the content and binding energy of hydrogen in diamond films, Tech. Phys. Lett., 41, 540, 10.1134/S1063785015060127 Li, 2007, X-ray diffraction patterns of graphite and turbostratic carbon, Carbon, 45, 1686, 10.1016/j.carbon.2007.03.038 Blanton, 2012, X-ray diffraction characterization of polymer intercalated graphite oxide, Powder Diffr., 27, 104, 10.1017/S0885715612000292 Ginzburg, 2005, X-ray diffraction analysis of C60 fullerene powder and fullerene soot, Tech. Phys., 50, 1458, 10.1134/1.2131953 Fahmy, 1999, Possible evidence for the stabilization of β-carbon nitride by high-energy ball milling, J. Mater. Res., 14, 2488, 10.1557/JMR.1999.0334 Cebik, 2013, Raman spectroscopy study of the nanodiamond-to-carbon onion transformation, Nanotechnology, 24, 205703, 10.1088/0957-4484/24/20/205703 Evans, 1979, Changes produced by high temperature treatment of diamond, 403 Batsanov, 2009, Thermodynamic reasons for delamination of molecular mixtures under pressure and detonation synthesis of diamond, Russ. J. Phys. Chem., 83, 1419, 10.1134/S0036024409080299 Zhang, 2013, Effects of hydrogen impurity on diamond crystal growth process, Int. J. Refractory Metals & Hard Materials, 38, 111, 10.1016/j.ijrmhm.2013.01.009 Goss, 2003, Theory of hydrogen in diamond, J. Phys. Cond. Matter, 15, R551, 10.1088/0953-8984/15/17/201 Briddon, 1988, Hydrogen in diamond, J. Phys. C Solid State Phys., 21, L1027, 10.1088/0022-3719/21/30/005 Ozawa, 2007, Preparation and behavior of brownish, clear nanodiamond colloids, Adv. Mater, 19, 1201, 10.1002/adma.200601452 Batsanov, 2014, Water shells of diamond nanoparticles in colloidal solutions, Appl. Phys. Lett., 104, 133105, 10.1063/1.4870464 Fang, 2009, Nonaromatic core-shell structure of nanodiamond from solid-state NMR spectroscopy, J. Am. Chem. Soc., 131, 1426, 10.1021/ja8054063 Belobrov, 2001, Paramagnetic properties of nanodiamond, Dokl. Phys., 46, 459, 10.1134/1.1390396 Kulakova, 2010, The structure of chemically modified detonation-synthesized nanodiamond particles, Nanotechnologies in Russia, 5, 474, 10.1134/S1995078010070074 Batsanov, 2012 Feoktistov, 2015, Evolution of the morphology of diamond particles and mechanism of their growth, Phys. Solid State, 57, 2184, 10.1134/S1063783415110104 Sun, 2000, Preferential oxidation of diamond {111}, J. Phys. D Appl. Phys., 33, 2196, 10.1088/0022-3727/33/17/316 Howe, 2000, The evolution of microstructure of CVD diamond by oxidation, Carbon, 38, 929, 10.1016/S0008-6223(00)00032-4 Etzold, 2014, Layer-by-layer oxidation for decreasing the size of detonation nanodiamond, Chem. Mater.26, 3479, 10.1021/cm500937r Jiang, 1995, FTIR study of ultradispersed diamond powder synthesised by explosive detonation, Carbon, 33, 1663, 10.1016/0008-6223(95)00115-1 Tatsii, 2009, Structure and properties of Dalan detonation diamonds, Comb. Expl. Shock Waves, 45, 95, 10.1007/s10573-009-0013-9 Batsanov, 2016, On the nature of fibres grown from nanodiamond colloids, Mater. Chem. Phys., 173, 325, 10.1016/j.matchemphys.2016.02.019