Novel structural CYP51 mutation in Trypanosoma cruzi associated with multidrug resistance to CYP51 inhibitors and reduced infectivity

Caio H. Franco1,2, David C. Warhurst3, Tapan Bhattacharyya3, Ho Y.A. Au3, Hai Le3, Miriam A. Giardini4, Bruno S. Pascoalino1, Ana Claudia Torrecilhas5, Lavinia M.D. Romera5, Rafael Pedro Madeira5, Sergio Schenkman6, Lucio H. Freitas-Junior2,4, Eric Chatelain7, Michael A. Miles3, Carolina B. Moraes1,2,4,5
1Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brazil
2Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
3Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
4Institut Pasteur Korea, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
5Department of Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), Diadema, SP, Brazil
6Department of Microbiology, Immunology and Parasitology, UNIFESP, São Paulo, SP, Brazil
7Drugs for Neglected Diseases initiative, Geneva, Switzerland

Tài liệu tham khảo

Antinori, 2017, Chagas disease in Europe: a review for the internist in the globalized world, Eur. J. Intern. Med., 43, 6, 10.1016/j.ejim.2017.05.001 Borst, 1995, New mechanisms of drug resistance in parasitic protozoa, Annu. Rev. Microbiol., 49, 427, 10.1146/annurev.mi.49.100195.002235 Buckner, 2003, Cloning and analysis of Trypanosoma cruzi lanosterol 14α-demethylase, Mol. Biochem. Parasitol., 132, 75, 10.1016/j.molbiopara.2003.07.004 Buckner, 1998, Induction of resistance to azole drugs in Trypanosoma cruzi, Antimicrob. Agents Chemother., 42, 3245, 10.1128/AAC.42.12.3245 Camargo, 1964, Growth and differentiation in Trypanosoma cruzi. I. Origin of metacyclic trypanosomes in liquid media, Rev. Inst. Med. Trop. Sao Paulo, 93 Campos, 2017, Genome-wide mutagenesis and multi-drug resistance in American trypanosomes induced by the front-line drug benznidazole, Sci. Rep., 7, 14407, 10.1038/s41598-017-14986-6 Campos, 2014, Benznidazole-resistance in Trypanosoma cruzi: evidence that distinct mechanisms can act in concert, Mol. Biochem. Parasitol., 193, 17, 10.1016/j.molbiopara.2014.01.002 Cencig, 2011, Parasitic loads in tissues of mice infected with Trypanosoma cruzi and treated with AmBisome, PLoS Neglected Trop. Dis., 5, e1216, 10.1371/journal.pntd.0001216 Chen, 2020, Uncovering new mutations conferring azole resistance in the Aspergillus fumigatus cyp51A gene, Front. Microbiol., 10, 3127, 10.3389/fmicb.2019.03127 Cherkesova, 2014, Sequence variation in CYP51A from the Y strain of Trypanosoma cruzi alters its sensitivity to inhibition, FEBS Lett., 588, 3878, 10.1016/j.febslet.2014.08.030 Clemons, 2017, Lack of efficacy of liposomal amphotericin B against acute and chronic Trypanosoma cruzi infection in mice, Am. J. Trop. Med. Hyg., 97, 1141, 10.4269/ajtmh.16-0975 Daniels, 2010, Cell biology of the trypanosome genome, Microbiol. Mol. Biol. Rev., 74, 552, 10.1128/MMBR.00024-10 De-Castro, 1993, Differential effect of amphotericin B on the three evolutive stages of Trypanosoma cruzi and on the host cell-parasite interaction, Braz. J. Med. Biol. Res., 26, 1219 Di Noia, 2002, A Trypanosoma cruzi small surface molecule provides the first immunological evidence that Chagas' disease is due to a single parasite lineage, J. Exp. Med., 195, 401, 10.1084/jem.20011433 El-Sayed, 2005, The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease, Science, 309, 409, 10.1126/science.1112631 Filardi, 1987, Susceptibility and natural resistance of Trypanosoma cruzi strains to drugs used clinically in Chagas disease, Trans. R. Soc. Trop. Med. Hyg., 81, 755, 10.1016/0035-9203(87)90020-4 Francisco, 2015, Limited ability of posaconazole to cure both acute and chronic Trypanosoma cruzi infections revealed by highly sensitive in vivo imaging, Antimicrob. Agents Chemother., 59, 4653, 10.1128/AAC.00520-15 Franco, 2019, Drug discovery for Chagas disease: impact of different host cell lines on assay performance and hit compound selection, Trav. Med. Infect. Dis., 4, 82 Franzén, 2011, Shotgun sequencing analysis of Trypanosoma cruzi I Sylvio X10/1 and comparison with T. cruzi VI CL Brener, PLoS Neglected Trop. Dis., 5, e984, 10.1371/journal.pntd.0000984 Goad, 1989, The activity of ketoconazole and other azoles against Trypanosoma cruzi: biochemistry and chemotherapeutic action in vitro, Mol. Biochem. Parasitol., 32, 179, 10.1016/0166-6851(89)90069-8 Gotoh, 1992, Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences, J. Biol. Chem., 267, 83, 10.1016/S0021-9258(18)48462-1 Grisard, 2014, Trypanosoma cruzi clone Dm28c draft genome sequence, Genome Announc., 2, 10.1128/genomeA.01114-13 Gulin, 2013, Efficacy of voriconazole in a murine model of acute Trypanosoma cruzi infection, J. Antimicrob. Chemother., 68, 888, 10.1093/jac/dks478 Haido, 1989, Amphotericin B-induced damage of Trypanosoma cruzi epimastigotes, Chem. Biol. Interact., 71, 91, 10.1016/0009-2797(89)90092-6 Hall, 1999, BioEdit: a user friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids Symp. Ser., 41, 95 Hargrove, 2017, Structural analyses of Candida albicans sterol 14α-demethylase complexed with azole drugs address the molecular basis of azole-mediated inhibition of fungal sterol biosynthesis, J. Biol. Chem., 292, 6728, 10.1074/jbc.M117.778308 Hargrove, 2013, Complexes of Trypanosoma cruzi sterol 14α-demethylase (CYP51) with two pyridine-based drug candidates for Chagas disease: structural basis for pathogen selectivity, J. Biol. Chem., 288, 31602, 10.1074/jbc.M113.497990 Herman, 2014, A genomic and evolutionary approach reveals non-genetic drug resistance in malaria, Genome Biol., 15, 511, 10.1186/s13059-014-0511-2 Keenan, 2012, Analogues of fenarimol are potent inhibitors of Trypanosoma cruzi and are efficacious in a murine model of Chagas disease, J. Med. Chem., 55, 4189, 10.1021/jm2015809 Khare, 2015, Antitrypanosomal treatment with benznidazole is superior to posaconazole regimens in mouse models of Chagas disease, Antimicrob. Agents Chemother., 59, 6385, 10.1128/AAC.00689-15 Kovacs, 2006, Determination of intrinsic hydrophilicity/hydrophobicity of amino acid side chains in peptides in the absence of nearest-neighbor or conformational effects, Biopolymers, 84, 283, 10.1002/bip.20417 Lee, 2013, Global economic burden of Chagas disease: a computational simulation model, Lancet Infect. Dis., 13, 342, 10.1016/S1473-3099(13)70002-1 Lepesheva, 2010, Crystal structures of Trypanosoma brucei sterol 14α-demethylase and implications for selective treatment of human infections, J. Biol. Chem., 285, 1773, 10.1074/jbc.M109.067470 Lepesheva, 2011, Sterol 14alpha-demethylase (CYP51) as a therapeutic target for human trypanosomiasis and leishmaniasis, Curr. Top. Med. Chem., 11, 2060, 10.2174/156802611796575902 Lepesheva, 2007, Sterol 14α-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms, Biochim. Biophys. Acta Gen. Subj., 1770, 467, 10.1016/j.bbagen.2006.07.018 Lepesheva, 2006, CYP51 from Trypanosoma cruzi: a phyla-specific residue in the B’ helix defines substrate preferences of sterol 14α-demethylase, J. Biol. Chem., 281, 3577, 10.1074/jbc.M510317200 Lewis, 2009, Genotyping of Trypanosoma cruzi: systematic selection of assays allowing rapid and accurate discrimination of all known lineages, Am. J. Trop. Med. Hyg., 81, 1041, 10.4269/ajtmh.2009.09-0305 McCabe, 1986, In vitro and in vivo effects of itraconazole against Trypanosoma cruzi, Am. J. Trop. Med. Hyg., 35, 280, 10.4269/ajtmh.1986.35.280 Molina, 2014, Randomized trial of posaconazole and benznidazole for chronic Chagas' disease, N. Engl. J. Med., 370, 1899, 10.1056/NEJMoa1313122 Moraes, 2016, Novel drug discovery for Chagas disease, Expet Opin. Drug Discov., 11, 447, 10.1517/17460441.2016.1160883 Moraes, 2014, Nitroheterocyclic compounds are more efficacious than CYP51 inhibitors against Trypanosoma cruzi: implications for Chagas disease drug discovery and development, Sci. Rep., 4, 4703, 10.1038/srep04703 Morillo, 2015, Randomized trial of benznidazole for chronic Chagas' cardiomyopathy, N. Engl. J. Med., 373, 1295, 10.1056/NEJMoa1507574 Morillo, 2017, Benznidazole and posaconazole in eliminating parasites in asymptomatic T. cruzi carriers: the STOP-CHAGAS trial, J. Am. Coll. Cardiol., 69, 939, 10.1016/j.jacc.2016.12.023 Oguike, 2016, Molecular determinants of sulfadoxine-pyrimethamine resistance in Plasmodium falciparum in Nigeria and the regional emergence of dhps 431V, Int. J. Parasitol. Drugs Drug Resist., 6, 220, 10.1016/j.ijpddr.2016.08.004 Palace-Berl, 2018, Investigating the structure-activity relationships of N’ -[(5-nitrofuran-2-yl) methylene] substituted hydrazides against Trypanosoma cruzi to design novel active compounds, Eur. J. Med. Chem., 144, 29, 10.1016/j.ejmech.2017.12.011 Pérez-Molina, 2009, Use of benznidazole to treat chronic Chagas' disease: a systematic review with a meta-analysis, J. Antimicrob. Chemother., 64, 1139, 10.1093/jac/dkp357 Pérez-Molina, 2018, Chagas disease, Lancet, 391, 82, 10.1016/S0140-6736(17)31612-4 Pires, 2014, DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach, Nucleic Acids Res., 42, W314, 10.1093/nar/gku411 Prasad, 1996 Purkait, 2012, Mechanism of amphotericin B resistance in clinical isolates of Leishmania donovani, Antimicrob. Agents Chemother., 56, 1031, 10.1128/AAC.00030-11 Schrick, 2000, FACKEL is a sterol C-14 reductase required for organized cell division and expansion in Arabidopsis embryogenesis, Genes Dev., 14, 1471, 10.1101/gad.14.12.1471 Sekiya, 1983, Reorganization of membrane ergosterol during cell fission events of Candida albicans: a freeze-fracture study of distribution of filipin-ergosterol complexes, J. Ultrasruct. Res., 83, 48, 10.1016/S0022-5320(83)90064-3 Silva, 2016, Design, synthesis and antitrypanosomal activity of some nitrofurazone 1,2,4-triazolic bioisosteric analogues, Eur. J. Med. Chem., 121, 553, 10.1016/j.ejmech.2016.04.065 Soeiro, 2013, In vitro and in vivo studies of the antiparasitic activity of sterol 14α-demethylase (CYP51) inhibitor VNI against drug-resistant strains of Trypanosoma cruzi, Antimicrob. Agents Chemother., 57, 4151, 10.1128/AAC.00070-13 Strushkevich, 2010, Structural basis of human CYP51 inhibition by antifungal azoles, J. Mol. Biol., 397, 1067, 10.1016/j.jmb.2010.01.075 Urbina, 2010, Specific chemotherapy of Chagas disease: relevance, current limitations and new approaches, Acta Trop., 115, 55, 10.1016/j.actatropica.2009.10.023 Urbina, 2003, In vitro and in vivo activities of ravuconazole on Trypanosoma cruzi, the causative agent of Chagas disease, Int. J. Antimicrob. Agents, 21, 27, 10.1016/S0924-8579(02)00273-X Velazquez, 2015, Randomized trial of benznidazole for chronic Chagas' cardiomyopathy, N. Engl. J. Med., 373, 1295, 10.1056/NEJMoa1507574 Viotti, 2006, Long-term cardiac outcomes of treating chronic Chagas disease with benznidazole versus no treatment: a nonrandomized trial, Ann. Intern. Med., 144, 724, 10.7326/0003-4819-144-10-200605160-00006 Warrilow, 2019, The evolution of azole resistance in Candida albicans sterol 14α-demethylase (CYP51) through incremental amino acid substitutions, Antimicrob. Agents Chemother., 63, 10.1128/AAC.02586-18 WHO, 2013 Wilkinson, 2008, A mechanism for cross-resistance to nifurtimox and benznidazole in trypanosomes, Proc. Natl. Acad. Sci. U.S.A., 105, 5022, 10.1073/pnas.0711014105 Yardley, 1999, In vitro and in vivo activity of amphotericin B-lipid formulations against experimental Trypanosoma cruzi infections, Am. J. Trop. Med. Hyg., 61, 193, 10.4269/ajtmh.1999.61.193 Yuan, 2012 Yun, 2009, Feasibility, drug safety, and effectiveness of etiological treatment programs for Chagas disease in Honduras, Guatemala, and Bolivia: 10-year experience of Médecins Sans Frontières, PLoS Neglected Trop. Dis., 3, e488, 10.1371/journal.pntd.0000488 Zhang, 2019, The fungal CYP51s: their functions, structures, related drug resistance, and inhibitors, Front. Microbiol., 10, 691, 10.3389/fmicb.2019.00691 Zingales, 2015, A novel ABCG-like transporter of Trypanosoma cruzi is involved in natural resistance to benznidazole, Mem. Inst. Oswaldo Cruz, 110, 433, 10.1590/0074-02760140407