Novel sandwich structured glass fiber Cloth/Poly(ethylene oxide)-MXene composite electrolyte
Nano Materials Science - 2023
Tài liệu tham khảo
Albertus, 2017, Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries, Nat. Energy, 3, 16, 10.1038/s41560-017-0047-2
Zhang, 2021, An overview of the characteristics of advanced binders for high-performance Li-S batteries, Nano Mater. Sci., 3, 124, 10.1016/j.nanoms.2020.10.006
Yu, 2021, A review of composite polymer-ceramic electrolytes for lithium batteries, Energy Storage Mater., 34, 282, 10.1016/j.ensm.2020.10.006
Goodenough, 1997, Ceramic solid electrolytes, Solid State Ionics, 94, 17, 10.1016/S0167-2738(96)00501-2
Wei, 1998, Highly conductive polymer electrolytes containing rigid polymers, Chem. Mater., 10, 2307, 10.1021/cm980170z
Wang, 2019, Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte, Nano Energy, 60, 205, 10.1016/j.nanoen.2019.03.051
Wang, 2019, Development of solid-state electrolytes for sodium-ion battery-A short review, Nano Mater. Sci., 1, 91, 10.1016/j.nanoms.2019.02.007
Homann, 2020, Poly(ethylene oxide)-based electrolyte for solid-state-lithium-batteries with high voltage positive electrodes: evaluating the role of electrolyte oxidation in rapid cell failure, Sci. Rep., 10, 4390, 10.1038/s41598-020-61373-9
Assegie, 2018, Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery, Nanoscale, 10, 6125, 10.1039/C7NR09058G
Yap, 2015, Modelling of temperature dependence on PEO electrolyte with Al2O3, Comput. Mater. Sci., 106, 59, 10.1016/j.commatsci.2015.04.045
Lin, 2005, Influence of TiO2 nano-particles on the transport properties of composite polymer electrolyte for lithium-ion batteries, J. Power Sources, 146, 397, 10.1016/j.jpowsour.2005.03.028
Jiapei, 2022, Composite ceramic coating with enhanced thermal shock resistance formed by the in-situ synthesis of nano-ZrO2, Ceram. Int., 48, 10629, 10.1016/j.ceramint.2021.12.277
Patil, 2014, Conductivity study of PEO-LiClO4 polymer electrolyte doped with ZnO nanocomposite ceramic filler, Bull. Mater. Sci., 37, 1403, 10.1007/s12034-014-0089-z
Yang, 2020, Rapid sintering method for highly conductive Li7La3Zr2O12 ceramic electrolyte, Ceram. Int., 46, 10917, 10.1016/j.ceramint.2020.01.106
Leng, 2022, Insight into the solid-liquid electrolyte interphase between Li6.4La3Zr1.4Ta0.6O12 and LiPF6-based liquid electrolyte, Appl. Surf. Sci., 575, 10.1016/j.apsusc.2021.151638
Cao, 2011, A poly (ethylene oxide)/graphene oxide electrolyte membrane for low temperature polymer fuel cells, J. Power Sources, 196, 8377, 10.1016/j.jpowsour.2011.06.074
Zhang, 2018, 2D materials for lithium/sodium metal anodes, Adv. Energy Mater., 8, 10.1002/aenm.201802833
Wu, 2021, In situ-formed dual-conductive protecting layer for dendrite-free Li metal anodes in all-solid-state batteries, Energy Technol., 9, 10.1002/ente.202100087
Wen, 2021, Graphene oxide enabled flexible PEO-based solid polymer electrolyte for all-solid-state lithium metal battery, ACS Appl. Energy Mater., 4, 3660, 10.1021/acsaem.1c00090
Pan, 2019, 2D MXene-containing polymer electrolytes for all-solid-state lithium metal batteries, Nanoscale Adv., 1, 395, 10.1039/C8NA00206A
Chen, 2021, Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures, Energy Environ. Sci., 14, 3492, 10.1039/D1EE00409C
Lucero, 2022, The roles of MXenes in developing advanced lithium metal anodes, J. Energy Chem., 69, 132, 10.1016/j.jechem.2022.01.011
Ma, 2018, 3D Porous MXene (Ti3C2)/reduced graphene oxide hybrid films for advanced lithium storage, ACS Appl. Mater. Interfaces, 10, 3634, 10.1021/acsami.7b17386
Dong, 2021, High-strength poly(ethylene oxide) composite electrolyte reinforced with glass fiber and ceramic electrolyte simultaneously for structural energy storage, ACS Appl. Energy Mater., 4, 4038, 10.1021/acsaem.1c00402
Zhai, 2021, Composite hybrid quasi-solid electrolyte for high-energy lithium metal batteries, ACS Appl. Energy Mater., 4, 7973, 10.1021/acsaem.1c01281
Wu, 2018, The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries, Energy Environ. Sci., 11, 1803, 10.1039/C8EE00540K
Cheng, 2016, Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries, Adv. Mater., 28, 2888, 10.1002/adma.201506124
Xu, 2018, Artificial soft-rigid protective layer for dendrite-free lithium metal anode, Adv. Funct. Mater., 28
Zhang, 2020, Lithium whisker growth and stress generation in an in situ atomic force microscope-environmental transmission electron microscope set-up, Nat. Nanotechnol., 15, 94, 10.1038/s41565-019-0604-x
Yang, 2019, High-areal-capacity all-solid-state lithium batteries enabled by rational design of fast ion transport channels in vertically-aligned composite polymer electrodes, Nano Energy, 61, 567, 10.1016/j.nanoen.2019.05.002
Cao, 2019, A solid-state single-ion polymer electrolyte with ultrahigh ionic conductivity for dendrite-free lithium metal batteries, Energy Storage Mater., 19, 401, 10.1016/j.ensm.2019.03.004
Li, 2018, 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries, ACS Appl. Mater. Interfaces, 10, 7069, 10.1021/acsami.7b18123
Zhang, 2021, 3D glass fiber cloth reinforced polymer electrolyte for solid-state lithium metal batteries, J. Membr. Sci., 621, 10.1016/j.memsci.2020.118940
Zhang, 2021, Three-dimensional fiber network reinforced polymer electrolyte for dendrite-free all-solid-state lithium metal batteries, Energy Storage Mater., 41, 631, 10.1016/j.ensm.2021.06.030
Luo, 2021, Rational design of fireproof fiber-network reinforced 3D composite solid electrolyte for dendrite-free solid-state batteries, Chem. Eng. J., 421, 10.1016/j.cej.2020.127771
Molinari, 2018, Effect of salt concentration on ion clustering and transport in polymer solid electrolytes: a molecular dynamics study of PEO-LiTFSI, Chem. Mater., 30, 6298, 10.1021/acs.chemmater.8b01955
Zhu, 2021, Flexible but robust Ti3C2Tx MXene/bamboo microfibril composite paper for high-performance wearable electronics, J. Mater. Chem., 9, 26758, 10.1039/D1TA08017B
Dong, 2022, MXene-carbon nanotubes-cellulose-LiFePO4 based self-supporting cathode with ultrahigh-area-capacity for lithium-ion batteries, Electrochim. Acta, 420, 10.1016/j.electacta.2022.140464
Jeong, 2021, A biopolymer-based functional separator for stable Li metal batteries with an additive-free commercial electrolyte, J. Mater. Chem., 9, 7774, 10.1039/D0TA12153C
Wang, 2017, Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries, ACS Appl. Mater. Interfaces, 9, 13694, 10.1021/acsami.7b00336
Zhang, 2014, Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries, Sci. Rep., 4, 6272, 10.1038/srep06272
Chen, 2016, A new composite solid electrolyte PEO/Li10GeP2S12/SN for all-solid-state lithium battery, Electrochim. Acta, 210, 905, 10.1016/j.electacta.2016.06.025
Wu, 2020, Nickel phosphate nanorod-enhanced polyethylene oxide-based composite polymer electrolytes for solid-state lithium batteries, J. Colloid Interface Sci., 565, 110, 10.1016/j.jcis.2020.01.005
Tao, 2017, A promising TPU/PEO blend polymer electrolyte for all-solid-state lithium ion batteries, Electrochim. Acta, 257, 31, 10.1016/j.electacta.2017.10.037
Li, 2021, Silica-assisted cross-linked polymer electrolyte membrane with high electrochemical stability for lithium-ion batteries, J. Colloid Interface Sci., 594, 1, 10.1016/j.jcis.2021.02.128
Puteh, 2005, Conductivity studies on chitosan-based polymer electrolytes with lithium salts, Ionics, 11, 375, 10.1007/BF02430249
Li, 2019, Poly(ionic liquid)-polyethylene oxide semi-interpenetrating polymer network solid electrolyte for safe lithium metal batteries, Chem. Eng. J., 375, 10.1016/j.cej.2019.121925
Chi, 2019, Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries, Energy Storage Mater., 17, 309, 10.1016/j.ensm.2018.07.004
