Novel sandwich structured glass fiber Cloth/Poly(ethylene oxide)-MXene composite electrolyte

Yu-Qin Mao1, Guang-He Dong1, Wei-Bin Zhu1, Yuan-Qing Li1,2, Pei Huang1, Shao-Yun Fu1,2
1College of Aerospace Engineering, Chongqing University, Chongqing 400044, China
2State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, China

Tài liệu tham khảo

Albertus, 2017, Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries, Nat. Energy, 3, 16, 10.1038/s41560-017-0047-2 Zhang, 2021, An overview of the characteristics of advanced binders for high-performance Li-S batteries, Nano Mater. Sci., 3, 124, 10.1016/j.nanoms.2020.10.006 Yu, 2021, A review of composite polymer-ceramic electrolytes for lithium batteries, Energy Storage Mater., 34, 282, 10.1016/j.ensm.2020.10.006 Goodenough, 1997, Ceramic solid electrolytes, Solid State Ionics, 94, 17, 10.1016/S0167-2738(96)00501-2 Wei, 1998, Highly conductive polymer electrolytes containing rigid polymers, Chem. Mater., 10, 2307, 10.1021/cm980170z Wang, 2019, Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte, Nano Energy, 60, 205, 10.1016/j.nanoen.2019.03.051 Wang, 2019, Development of solid-state electrolytes for sodium-ion battery-A short review, Nano Mater. Sci., 1, 91, 10.1016/j.nanoms.2019.02.007 Homann, 2020, Poly(ethylene oxide)-based electrolyte for solid-state-lithium-batteries with high voltage positive electrodes: evaluating the role of electrolyte oxidation in rapid cell failure, Sci. Rep., 10, 4390, 10.1038/s41598-020-61373-9 Assegie, 2018, Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery, Nanoscale, 10, 6125, 10.1039/C7NR09058G Yap, 2015, Modelling of temperature dependence on PEO electrolyte with Al2O3, Comput. Mater. Sci., 106, 59, 10.1016/j.commatsci.2015.04.045 Lin, 2005, Influence of TiO2 nano-particles on the transport properties of composite polymer electrolyte for lithium-ion batteries, J. Power Sources, 146, 397, 10.1016/j.jpowsour.2005.03.028 Jiapei, 2022, Composite ceramic coating with enhanced thermal shock resistance formed by the in-situ synthesis of nano-ZrO2, Ceram. Int., 48, 10629, 10.1016/j.ceramint.2021.12.277 Patil, 2014, Conductivity study of PEO-LiClO4 polymer electrolyte doped with ZnO nanocomposite ceramic filler, Bull. Mater. Sci., 37, 1403, 10.1007/s12034-014-0089-z Yang, 2020, Rapid sintering method for highly conductive Li7La3Zr2O12 ceramic electrolyte, Ceram. Int., 46, 10917, 10.1016/j.ceramint.2020.01.106 Leng, 2022, Insight into the solid-liquid electrolyte interphase between Li6.4La3Zr1.4Ta0.6O12 and LiPF6-based liquid electrolyte, Appl. Surf. Sci., 575, 10.1016/j.apsusc.2021.151638 Cao, 2011, A poly (ethylene oxide)/graphene oxide electrolyte membrane for low temperature polymer fuel cells, J. Power Sources, 196, 8377, 10.1016/j.jpowsour.2011.06.074 Zhang, 2018, 2D materials for lithium/sodium metal anodes, Adv. Energy Mater., 8, 10.1002/aenm.201802833 Wu, 2021, In situ-formed dual-conductive protecting layer for dendrite-free Li metal anodes in all-solid-state batteries, Energy Technol., 9, 10.1002/ente.202100087 Wen, 2021, Graphene oxide enabled flexible PEO-based solid polymer electrolyte for all-solid-state lithium metal battery, ACS Appl. Energy Mater., 4, 3660, 10.1021/acsaem.1c00090 Pan, 2019, 2D MXene-containing polymer electrolytes for all-solid-state lithium metal batteries, Nanoscale Adv., 1, 395, 10.1039/C8NA00206A Chen, 2021, Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures, Energy Environ. Sci., 14, 3492, 10.1039/D1EE00409C Lucero, 2022, The roles of MXenes in developing advanced lithium metal anodes, J. Energy Chem., 69, 132, 10.1016/j.jechem.2022.01.011 Ma, 2018, 3D Porous MXene (Ti3C2)/reduced graphene oxide hybrid films for advanced lithium storage, ACS Appl. Mater. Interfaces, 10, 3634, 10.1021/acsami.7b17386 Dong, 2021, High-strength poly(ethylene oxide) composite electrolyte reinforced with glass fiber and ceramic electrolyte simultaneously for structural energy storage, ACS Appl. Energy Mater., 4, 4038, 10.1021/acsaem.1c00402 Zhai, 2021, Composite hybrid quasi-solid electrolyte for high-energy lithium metal batteries, ACS Appl. Energy Mater., 4, 7973, 10.1021/acsaem.1c01281 Wu, 2018, The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries, Energy Environ. Sci., 11, 1803, 10.1039/C8EE00540K Cheng, 2016, Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries, Adv. Mater., 28, 2888, 10.1002/adma.201506124 Xu, 2018, Artificial soft-rigid protective layer for dendrite-free lithium metal anode, Adv. Funct. Mater., 28 Zhang, 2020, Lithium whisker growth and stress generation in an in situ atomic force microscope-environmental transmission electron microscope set-up, Nat. Nanotechnol., 15, 94, 10.1038/s41565-019-0604-x Yang, 2019, High-areal-capacity all-solid-state lithium batteries enabled by rational design of fast ion transport channels in vertically-aligned composite polymer electrodes, Nano Energy, 61, 567, 10.1016/j.nanoen.2019.05.002 Cao, 2019, A solid-state single-ion polymer electrolyte with ultrahigh ionic conductivity for dendrite-free lithium metal batteries, Energy Storage Mater., 19, 401, 10.1016/j.ensm.2019.03.004 Li, 2018, 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries, ACS Appl. Mater. Interfaces, 10, 7069, 10.1021/acsami.7b18123 Zhang, 2021, 3D glass fiber cloth reinforced polymer electrolyte for solid-state lithium metal batteries, J. Membr. Sci., 621, 10.1016/j.memsci.2020.118940 Zhang, 2021, Three-dimensional fiber network reinforced polymer electrolyte for dendrite-free all-solid-state lithium metal batteries, Energy Storage Mater., 41, 631, 10.1016/j.ensm.2021.06.030 Luo, 2021, Rational design of fireproof fiber-network reinforced 3D composite solid electrolyte for dendrite-free solid-state batteries, Chem. Eng. J., 421, 10.1016/j.cej.2020.127771 Molinari, 2018, Effect of salt concentration on ion clustering and transport in polymer solid electrolytes: a molecular dynamics study of PEO-LiTFSI, Chem. Mater., 30, 6298, 10.1021/acs.chemmater.8b01955 Zhu, 2021, Flexible but robust Ti3C2Tx MXene/bamboo microfibril composite paper for high-performance wearable electronics, J. Mater. Chem., 9, 26758, 10.1039/D1TA08017B Dong, 2022, MXene-carbon nanotubes-cellulose-LiFePO4 based self-supporting cathode with ultrahigh-area-capacity for lithium-ion batteries, Electrochim. Acta, 420, 10.1016/j.electacta.2022.140464 Jeong, 2021, A biopolymer-based functional separator for stable Li metal batteries with an additive-free commercial electrolyte, J. Mater. Chem., 9, 7774, 10.1039/D0TA12153C Wang, 2017, Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries, ACS Appl. Mater. Interfaces, 9, 13694, 10.1021/acsami.7b00336 Zhang, 2014, Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries, Sci. Rep., 4, 6272, 10.1038/srep06272 Chen, 2016, A new composite solid electrolyte PEO/Li10GeP2S12/SN for all-solid-state lithium battery, Electrochim. Acta, 210, 905, 10.1016/j.electacta.2016.06.025 Wu, 2020, Nickel phosphate nanorod-enhanced polyethylene oxide-based composite polymer electrolytes for solid-state lithium batteries, J. Colloid Interface Sci., 565, 110, 10.1016/j.jcis.2020.01.005 Tao, 2017, A promising TPU/PEO blend polymer electrolyte for all-solid-state lithium ion batteries, Electrochim. Acta, 257, 31, 10.1016/j.electacta.2017.10.037 Li, 2021, Silica-assisted cross-linked polymer electrolyte membrane with high electrochemical stability for lithium-ion batteries, J. Colloid Interface Sci., 594, 1, 10.1016/j.jcis.2021.02.128 Puteh, 2005, Conductivity studies on chitosan-based polymer electrolytes with lithium salts, Ionics, 11, 375, 10.1007/BF02430249 Li, 2019, Poly(ionic liquid)-polyethylene oxide semi-interpenetrating polymer network solid electrolyte for safe lithium metal batteries, Chem. Eng. J., 375, 10.1016/j.cej.2019.121925 Chi, 2019, Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries, Energy Storage Mater., 17, 309, 10.1016/j.ensm.2018.07.004