Novel quinoxaline 1,4-di-N-oxide derivatives as new potential antichagasic agents

European Journal of Medicinal Chemistry - Tập 66 - Trang 324-334 - 2013
Enrique Torres1, Elsa Moreno-Viguri1,2, Silvia Galiano1, Goutham Devarapally3, Philip W. Crawford3, Amaia Azqueta4, Leire Arbillaga4, Javier Varela5, Estefanía Birriel5, Rossanna Di Maio5, Hugo Cerecetto5, Mercedes González5, Ignacio Aldana1, Antonio Monge1, Silvia Pérez-Silanes1,2
1Neglected Diseases Section, Drug R&D Unit, Center for Applied Pharmacobiology Research, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain
2Pharmacotherapy Lab., Instituto de Salud Tropical, CIMA, Avda. Pío XII, 55, 31008 Pamplona, Spain
3Department of Chemistry, Southeast Missouri State University, Cape Girardeau, MO 63701 USA
4Department of Pharmacology and Toxocology, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain
5Grupo de Química Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias-Facultad de Química, Universidad de la República, 11400 Montevideo, Uruguay

Tài liệu tham khảo

Rassi, 2010, Chagas disease, Lancet, 375, 1388, 10.1016/S0140-6736(10)60061-X Lescure, 2010, Chagas disease: changes in knowledge and management, The Lancet Infectious Diseases, 10, 556, 10.1016/S1473-3099(10)70098-0 Coura, 2010, Chagas disease: 100 years after its discovery. A systemic review, Acta Tropica, 115, 5, 10.1016/j.actatropica.2010.03.008 2010 www.paho.org/chagas. Schmunis, 2007, Epidemiology of Chagas disease in non-endemic countries: the role of international migration, Memorias do Instituto Oswaldo Cruz, 102, 75, 10.1590/S0074-02762007005000093 Schmunis, 2010, Chagas disease: a Latin American health problem becoming a world health problem, Acta Tropica, 115, 14, 10.1016/j.actatropica.2009.11.003 Kirchhoff, 2011, Epidemiology of American trypanosomiasis (Chagas disease), Advances in Parasitology, 75, 1, 10.1016/B978-0-12-385863-4.00001-0 Dias, 2002, The impact of Chagas disease control in Latin America: a review, Memorias do Instituto Oswaldo Cruz, 97, 603, 10.1590/S0074-02762002000500002 Urbina, 2003, Specific chemotherapy of Chagas disease: controversies and advances, Trends in Parasitology, 19, 495, 10.1016/j.pt.2003.09.001 Urbina, 2010, Specific chemotherapy of Chagas disease: relevance, current limitations and new approaches, Acta Tropica, 115, 55, 10.1016/j.actatropica.2009.10.023 Coura, 2002, A critical review on Chagas disease chemotherapy, Memorias do Instituto Oswaldo Cruz, 97, 3, 10.1590/S0074-02762002000100001 Coura, 2010, Chagas disease: a new worldwide challenge, Nature, 465, S6, 10.1038/nature09221 Carta, 2005, Quinoxaline 1,4-dioxide: a versatile scaffold endowed with manifold activities, Current Medicinal Chemistry, 12, 2259, 10.2174/0929867054864831 González, 2007, Quinoxaline 1,4-dioxide and phenazine 5,10-dioxide. Chemistry and biology, Topics in Heterocyclic Chemistry, 11, 179, 10.1007/7081_2007_066 Zarranz, 2004, Synthesis and anticancer activity evaluation of new 2-alkylcarbonyl and 2-benzoyl-3-trifluoromethyl-quinoxaline 1,4-di-N-oxide derivatives, Bioorganic & Medicinal Chemistry, 12, 3711, 10.1016/j.bmc.2004.04.013 Solano, 2007, Synthesis and biological evaluation of new 2-arylcarbonyl-3-trifluoromethylquinoxaline 1,4-di-N-oxide derivatives and their reduced analogues, Journal of Medicinal Chemistry, 50, 5485, 10.1021/jm0703993 Moreno, 2010, Synthesis and antimycobacterial activity of new quinoxaline-2-carboxamide 1,4-di-N-oxide derivatives, European Journal of Medicinal Chemistry, 45, 4418, 10.1016/j.ejmech.2010.06.036 Ancizu, 2009, Heterocyclic-2-carboxylic acid (3-cyano-1,4-di-N-oxidequinoxalin-2-yl)amide derivatives as hits for the development of neglected disease drugs, Molecules, 14, 2256, 10.3390/molecules14062256 Aguirre, 2004, Quinoxaline N,N′-dioxide derivatives and related compounds as growth inhibitors of Trypanosoma cruzi. Structure–activity relationships, Bioorganic & Medicinal Chemistry Letters, 14, 3835, 10.1016/j.bmcl.2004.04.088 Vicente, 2010, Anti-T. cruzi activities and QSAR studies of 3-arylquinoxaline-2-carbonitrile di-N-oxides, Bioorganic & Medicinal Chemistry Letters, 20, 4831, 10.1016/j.bmcl.2010.06.101 Torres, 2011, New 1,4-di-N-oxide-quinoxaline-2-ylmethylene isonicotinic acid hydrazide derivatives as anti-mycobacterium tuberculosis agents, Bioorganic & Medicinal Chemistry Letters, 21, 3699, 10.1016/j.bmcl.2011.04.072 Burguete, 2011, Synthesis and biological evaluation of new quinoxaline derivatives as antioxidant and anti-inflammatory agents, Chemical Biology & Drug Design, 77, 255, 10.1111/j.1747-0285.2011.01076.x Barea, 2011, New salicylamide and sulfonamide derivatives of quinoxaline 1,4-di-N-oxide with antileishmanial and antimalarial activities, Bioorganic & Medicinal Chemistry Letters, 21, 4498, 10.1016/j.bmcl.2011.05.125 Barea, 2012, Antiplasmodial and leishmanicidal activities of 2-cyano-3-(4-phenylpiperazine-1-carboxamido) quinoxaline 1,4-dioxide derivatives, Molecules, 17, 9451, 10.3390/molecules17089451 Vicente, 2008, Synthesis and antiplasmodial activity of 3-furyl and 3-thienylquinoxaline-2-carbonitrile 1,4-di-N-oxide derivatives, Molecules, 13, 69, 10.3390/molecules13010069 Benitez, 2011, 3-Trifluoromethylquinoxaline N,N′-dioxides as anti-trypanosomatid agents. Identification of optimal anti-T. cruzi agents and mechanism of action studies, Journal of Medicinal Chemistry, 54, 3624, 10.1021/jm2002469 Mavandadi, 2006, The impact of microwave-assisted organic synthesis in drug discovery, Drug Discovery Today, 11, 165, 10.1016/S1359-6446(05)03695-0 Larhed, 2001, Microwave-assisted high-speed chemistry: a new technique in drug discovery, Drug Discovery Today, 6, 406, 10.1016/S1359-6446(01)01735-4 Kappe, 2006, The impact of microwave synthesis on drug discovery, Nature Reviews Drug Discovery, 5, 51, 10.1038/nrd1926 Wathey, 2002, The impact of microwave-assisted organic chemistry on drug discovery, Drug Discovery Today, 7, 373, 10.1016/S1359-6446(02)02178-5 Ancizu, 2010, New 3-methylquinoxaline-2-carboxamide 1,4-di-N-oxide derivatives as anti-mycobacterium tuberculosis agents, Bioorganic & Medicinal Chemistry, 18, 2713, 10.1016/j.bmc.2010.02.024 Boiani, 2008, Furoxan-, alkylnitrate-derivatives and related compounds as anti-trypanosomatid agents: mechanism of action studies, Bioorganic & Medicinal Chemistry, 16, 7900, 10.1016/j.bmc.2008.07.077 Boiani, 2010, Mode of action of nifurtimox and N-oxide-containing heterocycles against Trypanosoma cruzi: is oxidative stress involved?, Biochemical Pharmacology, 79, 1736, 10.1016/j.bcp.2010.02.009 Ames, 1975, Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test, Mutation Research, 31, 347, 10.1016/0165-1161(75)90046-1 Ortega, 2002, Anti-Mycobacterium tuberculosis agents derived from quinoxaline-2-carbonitrile and quinoxaline-2-carbonitrile 1,4-di-N-oxide, Arzneimittel-Forschung, 52, 113 Faucher, 1995, Detection of an “epimastigote-like” intracellular stage of Tripanosma cruzi, Parasitology Research, 81, 441, 10.1007/BF00931508 Almeida-de Faría, 1999, Trypanosoma cruzi: characterization of an intracellular epimastigote-like form, Experimental Parasitology, 92, 263, 10.1006/expr.1999.4423 Tyler, 2001, The life cycle of Trypanosoma cruzi revisited, International Journal of Parasitology, 31, 472, 10.1016/S0020-7519(01)00153-9 Bonnet-Delpon, 2008, Fluorine, an essential element for medicinal chemistry, Annales Pharmaceutiques Francaises, 66, 56, 10.1016/j.pharma.2007.12.001 Purser, 2008, Fluorine in medicinal chemistry, Chemical Society Reviews, 37, 320, 10.1039/B610213C Shah, 2007, The role of fluorine in medicinal chemistry, Journal of Enzyme Inhibition and Medicinal Chemistry, 22, 527, 10.1080/14756360701425014 Porcal, 2007, Second generation of 5-ethenylbenzofuroxan derivatives as inhibitors of Trypanosoma cruzi growth: synthesis, biological evaluation, and structure–activity relationships, Bioorganic & Medicinal Chemistry, 15, 2768, 10.1016/j.bmc.2007.01.009 Rieger, 1994 Bard, 2001 Ryan, 1985, Charge transfer in the mechanism of drug action involving quinoxaline di-N-oxides, Journal of Pharmaceutical Sciences, 74, 492, 10.1002/jps.2600740427 Crawford, 1986, Cyclic voltammetry of phenazines and quinoxalines including mono- and di-N-oxides. Relation to structure and antimicrobial activity, Chemico-Biological Interactions, 60, 67, 10.1016/0009-2797(86)90018-9 Ames, 1992, Cyclic voltammetry of some quinoxaline di-N-oxides and quinoxalines in dimethylformamide, Electrochimica Acta, 37, 1433, 10.1016/0013-4686(92)87018-U Miyazaki, 1981, Cyclic voltammetry of aromatic amine N-oxides in nonaqueous solvents and the stability of the free radicals produced, Bulletin of the Chemical Society of Japan, 54, 3850, 10.1246/bcsj.54.3850 Moreno, 2011, 1,4-Di-N-oxide quinoxaline-2-carboxamide: cyclic voltammetry and relationship between electrochemical behavior, structure and anti-tuberculosis activity, Electrochimica Acta, 56, 3270, 10.1016/j.electacta.2011.01.030 Pérez-Silanes, 2013, Cyclic voltammetric study of some anti-Chagas active quinoxaline 1,4-di-N-oxide-2-ketone derivatives, Helvetica Chimica Acta, 96, 217, 10.1002/hlca.201200085 Barqawi, 1987, A cyclic voltammetric study of some quinoxaline di-N-oxides and quinoxalines in acetonitrile: substituent effect on the cathodic reduction, Electrochimica Acta, 32, 597, 10.1016/0013-4686(87)87047-0 Zuman, 1967 Aguirre, 2002, Benzo[1,2-c]1,2,5-oxadiazole N-oxide derivatives as potential antitrypanosomal drugs. Structure–activity relationships. Part II, Archiv der Pharmazie, 335, 15, 10.1002/1521-4184(200201)335:1<15::AID-ARDP15>3.0.CO;2-8 Aguirre, 2004, Novel antiprotozoal products: imidazole and benzimidazole N-oxide derivatives and related compounds, Archiv der Pharmazie, 337, 259, 10.1002/ardp.200300840 Aguirre, 2005, New potent 5-substituted benzofuroxans as inhibitors of Trypanosoma cruzi growth: quantitative structure–activity relationship studies, Bioorganic & Medicinal Chemistry, 13, 6336, 10.1016/j.bmc.2005.07.072 Caterina, 2008, Imidazolidines as new anti-Trypanosoma cruzi agents: biological evaluation and structure–activity relationships, Bioorganic & Medicinal Chemistry, 16, 2226, 10.1016/j.bmc.2007.11.077 Aran, 2005, Synthesis and biological properties of new 5-nitroindazole derivatives, Bioorganic & Medicinal Chemistry, 13, 3197, 10.1016/j.bmc.2005.02.043 Gerpe, 2009, 5-Nitrofuranes and 5-nitrothiophenes with anti-Trypanosoma cruzi activity and ability to accumulate squalene, Bioorganic & Medicinal Chemistry, 17, 7500, 10.1016/j.bmc.2009.09.013 Maron, 1983, Revised methods for the Salmonella mutagenicity test, Mutation Research, 113, 173, 10.1016/0165-1161(83)90010-9 Mortelmans, 2000, The Ames Salmonella/microsome mutagenicity assay, Mutation Research, 455, 29, 10.1016/S0027-5107(00)00064-6 Cabrera, 2009, Cytotoxic, mutagenic and genotoxic effects of new anti-T. cruzi 5-phenylethenylbenzofuroxans. Contribution of phase I metabolites on the mutagenicity induction, Toxicology Letters, 190, 140, 10.1016/j.toxlet.2009.07.006 Guengerich, 2006, Cytochrome P450s and other enzymes in drug metabolism and toxicity, The AAPS Journal, 8, E101, 10.1208/aapsj080112 Chu, 1981, Evaluating statistical analyses and reproducibility of microbial mutagenicity assays, Mutation Research, 85, 119, 10.1016/0165-1161(81)90027-3 Gritzner, 1984, Recommendations on reporting electrode potentials in nonaqueous solvents, Pure Applied Chemistry, 56, 461, 10.1351/pac198456040461 Strier, 1958, The polarography of quinoxaline II. 6-Substituted derivatives, Journal of American Chemical Society, 80, 1565, 10.1021/ja01540a014