Novel photoactive magnetic semiconductor nanocomposites with potential magneto-optical properties

Juan Guillermo Gómez García1, C. Ostos1, O. Arnache2, O. Raymond Herrera3, J. M. Siqueiros3
1CATALAD Research Group, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, A.A. 1226, Medellín, Colombia
2GES Research Group, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, A.A. 1226, Medellín, Colombia
3Centro de Nanociencias y Nanotecnología-Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada, AP 14, Ensenada, 22860, B.C., México

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ali A, Zafar H, Zia M, Phull AR, Ali JS, Hussain A (2016) Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl 9:49–67. https://doi.org/10.2147/NSA.S99986

Andrade ÂL, Cavalcante LCD, Fabris JD, Pereira MC, Ardisson JD, Domingues RZ (2017) Preparation and characterization of Fe3O4-Pt nanoparticles. Hyperfine Interact. https://doi.org/10.1007/s10751-017-1426-6

Bai X, Wei J, Tian B, Liu Y, Reiss T, Guiblin N, Gemeiner P, Dkhil B, and Ingrid Canero-Infante (2016) Size effect on optical and photocatalytic properties in BiFeO3 nanoparticles. J Phys Chem C 120(7):3595–3601. https://doi.org/10.1021/acs.jpcc.5b09945

Banerjee A, Pal AJ (2020) Track the bands: Verwey phase transition in single magnetite nanocrystals. J Phys: Condens Matter 32:055701. https://doi.org/10.1088/1361-648x/ab4d27

Baqiah H, Talib ZA, Shaari AH, Dihom MM, Kechik MMA, Chen SK, Liew JYC, Zulkarnain Zainal L, Fudzi M (2019) Structural, optical, magnetic and photoelectrochemical properties of (BiFeO3)1–x(Fe3O4)x nanocomposites. J Sol-Gel Sci Technol 91(3):624–633. https://doi.org/10.1007/s10971-019-05053-9

Baskakov AO, Soloveva AY, Ioni YV, Starchikov SS, Lyubutin IS II, Khodos ASA, Gubin SP (2017) Magnetic and interface properties of the core-shell Fe3O4/Au nanocomposites. Appl Surf Sci 422:638–644. https://doi.org/10.1016/j.apsusc.2017.06.029

Bismibanu A, Vanga PR, Selvalakshmi T, Ashok M, Alagar M (2018) Investigations on structural, optical and multiferroic properties of bismuth ferrite nanoparticles synthesized by sonochemical method. J Elec Mater 47:6373–6377. https://doi.org/10.1007/s11664-018-6581-2

Casanova Monteiro F, de Jesus Cubas P, Sena Kosera V, Haas Leandro Monteiro JF, Fujiwara ST (2018) Photocatalytic activity of BiFeO3 in pellet form synthetized using solid state reaction and modified Pechini method. J Photochem Photobiol A Chem 367:390–396. https://doi.org/10.1016/j.jphotochem.2018.08.051

Chen Y, Qian J, Yu J, Guo M, Zhang Q, Jiang J, Shen Z, Chen L-Q, Shen Y (2020) An all-scale hierarchical architecture induces colossal room-temperature electrocaloric effect at ultralow electric field in polymer nanocomposites. Adv Mater. https://doi.org/10.1002/adma.201907927

Dai H, Li T, Chen Z, Liu D, Xue R, Zhao C, Liu H, Huang N (2016) Studies on the structural, electrical and magnetic properties of Ce-doped BiFeO3 ceramics. J Alloys Compd 672:182–189. https://doi.org/10.1016/j.jallcom.2016.02.134

Dai H, Ye F, Chen Z, Li T, Liu D (2018) The effect of ion doping at different sites on the structure, defects and multiferroic properties of BiFeO3 ceramics. J Alloys Compd 734:60–65. https://doi.org/10.1016/j.jallcom.2017.11.012

Gadhoumi F, Kallel I, Benzarti Z, Abdelmoula N, Hamedoun M, Elmoussaoui H, Mezzane D, Khemakhem H (2020) Investigation of magnetic, dielectric and optical properties of BiFe0.5Mn0.5O3 multiferroic ceramic. Chem Physics Lett 753:137569. https://doi.org/10.1016/j.cplett.2020.137569

Geissberger AE, Galener FL (1983) Raman study of vitreous SiO2 versus fictive temperature. Phys Rev B 28(6):3266–3271. https://doi.org/10.1103/physrevb.28.3266

Goya GF, Berquó TS, Fonseca FC, Morales MP (2003) Static and dynamic magnetic properties of spherical magnetite nanoparticles. J Appl Phys 94(5):3520–3528. https://doi.org/10.1063/1.599959

Hesieh CT, Lue JT (2003) Anisotropy-induced quantum superparamagnet state in cobalt-ferrite nanoparticles at low temperature. Phys Lett A 316:329–335. https://doi.org/10.1016/j.physleta.2003.08.004

Jaiswal A, Das R, Vivekanand K, Abraham PM, Adyanthaya S, Poddar P (2010) Effect of reduced particle size on the magnetic properties of chemically synthesized BiFeO3 nanocrystals. J Phys Chem C 114:2108–2115. https://doi.org/10.1021/jp910745g

Jin L, Liu LM, Li C, Song D, Yang B, Zhu X (2020) Evolution of structure and electrical properties of epitaxial BiFeO3 thin films through solution and annealing atmosphere. J Alloys Compd 843:155910. https://doi.org/10.1016/j.jallcom.2020.155910

Jones RG, Ando W, Chojnowski J (eds) (2000). Silicon-containing polymers. Springer, Netherlands. https://doi.org/10.1007/978-94-011-3939-7

Khan HAA, Ullah S, Rehman G, Khan S, Ahmad I (2020) First principle study of band gap nature, spontaneous polarization, hyperfine field and electric field gradient of desirable multiferroic bismuth ferrite (BiFeO3). J Phys Chem Solids 148:109737. https://doi.org/10.1016/j.jpcs.2020.109737

Kumar AS, Kumar P, Walia R, Verma V (2019) Improved ferroelectric, magnetic and photovoltaic properties of Pr doped multiferroic bismuth ferrites for photovoltaic application. Res Phys 14:102403. https://doi.org/10.1016/j.rinp.2019.102403

Kurik MV (1971) Urbach rule. Phys Status Solidi 8(1):9–45. https://doi.org/10.1002/pssa.2210080102

Lam SM, Sin JC, Mohamed AR (2017) A newly emerging visible light responsive BiFeO3 perovskite for photocatalytic applications: a mini review. Mater Res Bull 90:15–30. https://doi.org/10.1016/j.materresbull.2016.12.052

Lindquist AK, Feinberg JM, Harrison RJ, Loudon JC, Newell AJ (2019) The effects of dislocations on crystallographic twins and domain wall motion in magnetite at the Verwey transition. Earth, Planets Sp 71(1):5. https://doi.org/10.1186/s40623-018-0981-7

Liu Y-L, Wu JM (2019) Synergistically catalytic activities of BiFeO3/TiO2 core-shell nanocomposites for degradation of organic dye molecule through piezophototronic effect. Nano Energy 56:74–81. https://doi.org/10.1016/j.nanoen.2018.11.028

Maleki H (2018) Photocatalytic activity and magnetic enhancements by addition of lanthanum into the BiFeO3 structure and the effect of synthesis method. J Mater Sci Mater Electron 29(14):11862–11869. https://doi.org/10.1007/s10854-018-9286-7

Mao W, Yao Q, Fan Y, Wang Y, Wang X, Pu Y, Li X (2019) Combined experimental and theoretical investigation on modulation of multiferroic properties in BiFeO3 ceramics induced by Dy and transition metals co-doping. J Alloys Compd 784:117–124. https://doi.org/10.1016/j.jallcom.2018.12.381

Marín T, Montoya P, Arnache O, Calderon JA (2016) Influence of surface treatment on magnetic properties of Fe3O4 nanoparticles synthesized by electrochemical method. J Phys Chem B 120(27):6634–6645. https://doi.org/10.1021/acs.jpcb.6b01796

Masoudpanah SM, Mirkazemi SM, Bagheriyeh R, Jabbari F, Bayat F (2017) Structural, magnetic and photocatalytic characterization of Bi1-xLaxFeO3 nanoparticles synthesized by thermal decomposition method. Bull Mater Sci 40(1):93–100. https://doi.org/10.1007/s12034-016-1346-0

McDonnell KA, Wadnerkar N, English NJ, Rahman M, Dowling D (2013) Photo-active and optical properties of bismuth ferrite (BiFeO3): an experimental and theoretical study. Chem Phys Lett 572:78–84

Pattnaik SP, Behera A, Martha S, Acharya R, Parida K (2018) Synthesis, photoelectrochemical properties and solar light-induced photocatalytic activity of bismuth ferrite nanoparticles. J Nanopart Res 20:10. https://doi.org/10.1007/s11051-017-4110-5

Ramesh R, Spaldin NA (2007) Multiferroics: progress and prospects in thin films. Nat Mat 6:21–29. https://doi.org/10.1038/nmat1805

Ramirez MO, Kumar A, Denev SA, Podraza NJ, Xu XS, Rai RC, Chu YH, Seidel J, Martin LW, Yang SY, Saiz E, Ihlefeld J, Lee S, Klug J, Cheong SW, Bedzyc MJ, Auciello O, Schlom DG, Ramesh R, Orestein J, Musfeldt JL, Gopalan V (2009) Magnon sidebands and spin-charge coupling in bismuth ferrite probed by nonlinear optical spectroscopy. Phys Rev B - Condens Matter Mater Phys 79(22):224106. https://doi.org/10.1103/PhysRevB.79.224106

Rojac T, Bencan A, Malic B, Tutuncu G, Jones JL, Daniels JE, Damjanovic D (2014) BiFeO3 ceramics: processing, electrical, and electromechanical properties. J Am Ceram Soc 97(7):1993–2011. https://doi.org/10.1111/jace.12982

Rojas-Flores SJ, Angelats-Silva LM, Roldan-Lopez JA, Sizov AS, Emelianov NA (2019) Influence of the order of layers deposition and annealing temperature on the multiferroic properties of multilayer BiFeO3-CoFe2O4 nanocomposites. Ferroelectrics 543(1):107–114. https://doi.org/10.1080/00150193.2019.1592442

Sardarian P, Naffakh-Moosavy H, Afghahi SSS (2017) A newly-designed magnetic/dielectric [Fe3O4/BaTiO3@MWCNT] nanocomposite system for modern electromagnetic absorption applications. J Magn Magn Mater 441:257–263. https://doi.org/10.1016/j.jmmm.2017.05.074

Sharma P, Diwan PK, Pandey OP (2019) Impact of environment on the kinetics involved in the solid-state synthesis of bismuth ferrite. Mater Chem Phys 233:171–179. https://doi.org/10.1016/j.matchemphys.2019.05.055

Shebanova ON, Lazor P (2003a) Raman spectroscopic study of magnetite (FeFe2O4): A new assignment for the vibrational spectrum. J Solid State Chem 174(2):424–430. https://doi.org/10.1016/S0022-4596(03)00294-9

Shebanova ON, Lazor P (2003b) Raman study of magnetite (Fe3O4): laser-induced thermal effects and oxidation. J Raman Spectrosc 34(11):845–852. https://doi.org/10.1002/jrs.1056

Singh H, Garg N, Arora P, Rajput Jigyasa JK (2018) Sucrose chelated auto combustion synthesis of BiFeO3 nanoparticles: magnetically recoverable catalyst for the one-pot synthesis of polyhydroquinoline. Appl Organomet Chem 32(6):e4357. https://doi.org/10.1002/aoc.4357

Sun X, Liu Z, Yu H, Zheng Z, Zeng D (2018) Facile synthesis of BiFeO3 nanoparticles by modified microwave-assisted hydrothermal method as visible light driven photocatalysts. Mater Lett 219:225–228. https://doi.org/10.1016/j.matlet.2018.02.052

Tian G, Ojha S, Ning S, Gao X, Ross CA (2019) Structure, ferroelectricity, and magnetism in self-assembled BiFeO3–CoFe2O4 nanocomposites on (110)-LaAlO3 substrates. Adv Electron Mater 5(7):1900012. https://doi.org/10.1002/aelm.201900012

Tong WY, Ting HC, Gong SJ, Wan X, Duan CG (2015) Magnetic ordering induced giant optical property change in tetragonal BiFeO3. Sci Rep 5:17993. https://doi.org/10.1038/srep17993

Wang L, Ma H, Chang L, Ma C, Yuan G, Wang J, Wu T (2017a) Ferroelectric BiFeO3 as an oxide dye in highly tunable mesoporous all-oxide photovoltaic heterojunctions. Small 13(1):1602355. https://doi.org/10.1002/smll.201602355

Wang F, Chen D, Zhang N, Wang S, Qin L, Sun X, Huang Y (2017b) Oxygen vacancies induced by zirconium doping in bismuth ferrite nanoparticles for enhanced photocatalytic performance. J Colloid Interface Sci 508:237–247. https://doi.org/10.1016/j.jcis.2017.08.056

Wang G, Lin C, Liu S, Deng Q, Mao Y, Wang S (2018a) Hydrothermal synthesis of bismuth ferrite with controllable phase structure, morphology and visible light photocatalytic activities. J Mater Sci Mater Electron 29(6):4926–4932. https://doi.org/10.1007/s10854-017-8451-8

Wang X, Yang C, Zhou D, Wang Z, Jin M (2018b) Chemical co-precipitation synthesis and properties of pure-phase BiFeO3. Chem Phys Lett 713:185–188. https://doi.org/10.1016/j.cplett.2018.09.043

Wang N, Li Y, Wang FL, Zhou SD, Zhu L, Wang YG, Chen FG (2019) Structure, magnetic and ferroelectric properties of Sm and Sc doped BiFeO3 polycrystalline ceramics. J Alloys Compd 789:894–903. https://doi.org/10.1016/j.jallcom.2019.03.132

Wu H, Zhu X (2019) Microstructures, magnetic and dielectric properties of Ba-Doped BiFeO3 nanoparticles synthesized via molten salt route. J Am Ceram Soc 102:4698–4709. https://doi.org/10.1111/jace.16348

Xiao C, Zhang J, Xu J, Tong W, Cao B, Li K, Pan B, Su H, Xie Y (2012) Quantum tunelling of magnetization in ultrasmall half-metallic V3O4 quantum dots: displaying quantum superparamagnetic state. Sci Reports 2:1–6. https://doi.org/10.1038/srep00755

Xie W, Zhang Z, Liao L, Liu J, Su H, Wang S, Guo D (2020) Green chemical mechanical polishing for sapphire wafers using a novel developed slurry. Nanoscale 12:22518–22526. https://doi.org/10.1039/d0nr04705h

Yotburut B, Thongbai P, Yamwong T, Maensiri S (2017) Synthesis and characterization of multiferroic Sm-doped BiFeO3 nanopowders and their bulk dielectric properties. J Magn Magn Mater 437:51–61. https://doi.org/10.1016/j.jmmm.2017.04.041

Zhang Z, Huo F, Zhang X, Guo D (2012) Fabrication and size prediction of crystalline nanoparticles of silicon induced by nanogrinding with ultrafine diamond grits. Scripta Mater 67(7–8):657–660. https://doi.org/10.1016/j.scriptamat.2012.07.01

Zhang Z, Song Y, Xu C, Guo D (2012) A novel model for undeformed nanometer chips of soft-brittle HgCdTe films induced by ultrafine diamond grits. Scripta Mater 67(2):197–200. https://doi.org/10.1016/j.scriptamat.2012.04.017

Zhang Z, Huo Y, Guo D (2013) A model for nanogrinding based on direct evidence of ground chips of silicon wafers. Sci China Tech Sci 56(9):2099–2108. https://doi.org/10.1007/s11431-013-5286-2

Zhang Z, Wang B, Kang R, Zhang B, Guo D (2015a) Changes in surface layer of silicon wafers from diamond scratching. CIRP Ann 64(1):349–352. https://doi.org/10.1016/j.cirp.2015.04.005

Zhang Z, Guo D, Wang B, Kang R, Zhang B (2015b) A novel approach of high-speed scratching on silicon wafers at nanoscale depths of cut. Sci Rep 5(1):16395. https://doi.org/10.1038/srep16395

Zhang Z, Cui J, Wang B, Wang Z, Kang R, Guo D (2017a) A novel approach of mechanical chemical grinding. J Alloys Compd 726:514–524. https://doi.org/10.1016/j.jallcom.2017.08.024

Zhang Z, Huang S, Wang S, Wang B, Bai Q, Zhang B, Kang R, Guo DA (2017b) Novel approach of high-performance grinding using developed diamond wheels. Int J Adv Manuf Technol 91:3315–3326. https://doi.org/10.1007/s00170-017-0037-3

Zhang Z, Du Y, Wang B, Wang Z, Kang R, Guo D (2017c) Nanoscale wear layers on silicon wafers induced by mechanical chemical grinding. Tribol Lett 65(4):132. https://doi.org/10.1007/s11249-017-0911-z

Zhang Z, Shi Z, Du Y, Yu Z, Guo L, Guo D (2018) A novel approach of chemical mechanical polishing for a titanium alloy using an environment-friendly slurry. Appl Surf Sci 427:409–415. https://doi.org/10.1016/j.apsusc.2017.08.064

Zhang Z, Cui J, Zhang J, Liu D, Yu Z, Guo D (2019) Environment friendly chemical mechanical polishing of copper. Appl Surf Sci 467–468:5–11. https://doi.org/10.1016/j.apsusc.2018.10.133

Zhang Z, Liao L, Wang X, Xie W, Guo D (2020) Development of a novel chemical mechanical polishing slurry and its polishing mechanisms on a nickel alloy. Appl Surf Sci 506:144670. https://doi.org/10.1016/j.apsusc.2019.144670

Zheng W, Kumar P, Washington A, Wang Z, Dalal NS, Strouse GF, Singh K (2012) quantum phase transition from superparamagnetic to quantum superparamagnetic state in ultra small Cd1-xCr(II)xSe quantum dots? J Am Chem Soc 134:2172–2179. https://doi.org/10.1021/ja2088426

Zhu X, Hang Q, Xing Z, Yang Y, Zhu J, Liu Z, Ming N, Zhou P, Song Y, Li Z, Yu T, Zou Z (2011) Microwave hydrothermal synthesis, structural characterization, and visible-light photocatalytic activities of single-crystalline bismuth ferric nanocrystals. J Am Ceram Soc 94(8):2688–2693. https://doi.org/10.1111/j.1551-2916.2011.04430.x

Zhu H, Zhao Y, Wang Y (2019) Orientation dependent leakage current behaviors and ferroelectric polarizations of off-axis sputtered BiFeO3 thin films. J Alloys Compd 803:942–949. https://doi.org/10.1016/j.jallcom.2019.06.343