Novel non-equimolar SrLa(Al0.25Zn0.125Mg0.125Ga0.25Ti0.25)O4 high-entropy ceramics with excellent mechanical and microwave dielectric properties
Tài liệu tham khảo
Reaney, 2006, Microwave dielectric ceramics for resonators and filters in mobile phone networks, J. Am. Ceram. Soc., 89, 2063, 10.1111/j.1551-2916.2006.01025.x
Mirsaneh, 2008, Circularly polarized dielectric-loaded antennas: current technology and future challenges, Adv. Funct. Mater., 28, 2293, 10.1002/adfm.200701444
Xiao, 2018, Opportunistic multicast NOMA with security concerns in a 5G massive MIMO system, IEEE Commun. Mag., 56, 91, 10.1109/MCOM.2018.1700671
Chen, 2018, Structure and microwave dielectric properties of SrLa[Al1− x(Mg0. 5Ti0.5)x]O4 (x=0.2–0.8) ceramics, Ceram. Int., 44, 1984, 10.1016/j.ceramint.2017.10.142
Spitzer, 1962, Far infrared dielectric dispersion in BaTiO3, SrTiO3, and TiO2, Phys. Rev., 126, 1710, 10.1103/PhysRev.126.1710
Xiao, 2005, Microstructures and microwave dielectric characteristics of CaRAlO4 (R = Nd, Sm, Y) ceramics with tetragonal K2NiF4, Struct., J. Am. Ceram. Soc., 87, 2143, 10.1111/j.1151-2916.2004.tb06373.x
Chen, 2003, SrLnAlO4 (LnNd and Sm) microwave dielectric ceramics, J. Electroceram, 10, 111, 10.1023/A:1025695722686
Peng, 2010, Improvement of microwave dielectric characteristics in SrLaAlO4 ceramics by Ca substitution, J. Am. Ceram. Soc., 93, 4066, 10.1111/j.1551-2916.2010.03990.x
Xiang, 2021, High-entropy ceramics: present status, challenges, and a look forward, J. Adv. Ceram., 10, 385, 10.1007/s40145-021-0477-y
Sarkar, 2019, High‐entropy oxides: fundamental aspects and electrochemical properties, Adv. Mater., 31, 1806236, 10.1002/adma.201806236
Sarkar, 2020, High entropy oxides: The role of entropy, enthalpy and synergy, Scr. Mater., 187, 43, 10.1016/j.scriptamat.2020.05.019
Zhang, 2019, Dense high-entropy boride ceramics with ultra-high hardness, Scr. Mater., 164, 135, 10.1016/j.scriptamat.2019.01.021
Qin, 2019, A high entropy silicide by reactive spark plasma sintering, J. Adv. Ceram., 8, 148, 10.1007/s40145-019-0319-3
Wei, 2019, High entropy carbide ceramics from different starting materials, J. Eur. Ceram. Soc., 39, 2989, 10.1016/j.jeurceramsoc.2019.04.006
Feng, 2019, Low‐temperature sintering of single‐phase, high‐entropy carbide ceramics, J. Am. Ceram. Soc., 102, 7217, 10.1111/jace.16672
Xiang, 2021, Microwave dielectric high-entropy ceramic Li(Gd0.2Ho0.2Er0.2Yb0.2Lu0.2)GeO4 with stable temperature coefficient for low-temperature cofired ceramic technologies, J. Mater. Sci. Technol., 93, 28, 10.1016/j.jmst.2021.03.057
Liu, 2022, Crystal structure and microwave dielectric properties of (Mg0.2Ni0.2Zn0.2Co0.2Mn0.2)2SiO4-A novel high-entropy ceramic, Ceram. Int., 48, 23307, 10.1016/j.ceramint.2022.04.317
Chen, 2023, Entropy regulation in LaNbO4-based fergusonite to implement high-temperature phase transition and promising dielectric properties, J. Adv. Ceram., 12, 1067, 10.26599/JAC.2023.9220739
Castle, 2018, Processing and properties of high-entropy ultra-high temperature carbides, Sci. Rep., 8, 8609, 10.1038/s41598-018-26827-1
Peng, 2019, Diffusion-controlled alloying of single-phase multi-principal transition metal carbides with high toughness and low thermal diffusivity, Appl. Phys. Lett., 114, 10.1063/1.5054954
Liu, 2021, A novel high-entropy (Sm0.2Eu0.2Tb0.2Dy0.2Lu0.2)2Zr2O7 ceramic aerogel with ultralow thermal conductivity, Ceram. Int., 47, 29960, 10.1016/j.ceramint.2021.07.170
Fan, 2005, Complex-permittivity measurement on high-Q materials via combined numerical approaches, IEEE Trans. Microw. Theory Tech., 53, 3130, 10.1109/TMTT.2005.855360
Agne, 2018, Heat capacity of Mg3Sb2, Mg3Bi2, and their alloys at high temperatur, Mater. Today Phys., 6, 83, 10.1016/j.mtphys.2018.10.001
Fan, 2008, Structural dependence of microwave dielectric properties of SrRAlO4 (R= Sm, Nd, La) ceramics: crystal structure refinement and infrared reflectivity study, Chem. Mater., 20, 4092, 10.1021/cm703273z
Magrez, 2001, High internal stresses in Sr1−xLa1+xAl1−xMgxO4 solid solution (0≤x≤0.7) characterized by infrared and raman spectroscopies coupled with crystal structure refinement, Chem. Mater., 13, 3893, 10.1021/cm001209e
Hadjiev, 1997, Optical phonons probe of the SrLaAlO4 crystal structure, J. Alloy. Compd. 251 (1-2), 7, 10.1016/S0925-8388(96)02759-4
Drozdowski, 1997, Study of SrLaAlO4 and SrLaGaO4 substrate crystals by raman spectroscopy, Acta Phys. Pol. A, 10.12693/APhysPolA.92.139
Liu, 2016, Structural evolution of SrLaAl1−x(Zn0.5Ti0.5)xO4 ceramics and effects on their microwave dielectric Properties, J. Mater. Chem. C., 4, 4684, 10.1039/C6TC00841K
Sun, 2015, Raman spectra analysis for Ba[(Mg1−xNix)1/3Nb2/3]O3 microwave dielectric ceramics, AIP Adv., 5, 10.1063/1.4905740
Yan, 2020, Microwave dielectric properties of SrLa[Ga1−x (Mg0.5Ti0.5)x]O4 and SrLa[Ga1−x(Zn0.5Ti0.5)x]O4 (x=0.2–0.8) ceramics, Int. J. Appl. Ceram. Tec., 17, 790, 10.1111/ijac.13395
Davies, 2003, Communicating with wireless perovskites: cation order and zinc volatilization, J. Eur. Ceram. Soc., 23, 2461, 10.1016/S0955-2219(03)00156-0
Bosman, 1963, Temperature dependence of dielectric constants of cubic ionic compounds, Phys. Rev., 129, 1593, 10.1103/PhysRev.129.1593
Rysselberghe, 2002, Remarks concerning the Clausius-Mossotti, law, J. Phy. Chem., 36, 1152, 10.1021/j150334a007
Liao, 2011, New low‐loss microwave dielectric material ZnTiNbTaO8, J. Am. Ceram. Soc., 94, 3237, 10.1111/j.1551-2916.2011.04815.x
Zhang, 2022, High-entropy (Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3 perovskite ceramics with A-site short-range disorder for thermoelectric applications, J. Mater. Sci. Technol., 97, 182, 10.1016/j.jmst.2021.05.016
Chen, 2022, Ab initio study of mechanical properties of hexagonal high-entropy ceramic (Mo0.25Nb0.25Ta0.25V0.25)(Al0.5Si0.5)2 with dual mixing of cation and anion sublattice, J. Phys. Chem. Solids, 165, 10.1016/j.jpcs.2022.110701
Lebowitz, 1993, Boltzmann's entropy and time's arrow, Phys. Today, 46, 32, 10.1063/1.881363
Li, 2021, High-entropy oxides: advanced research on electrical properties, Coatings, 11, 628, 10.3390/coatings11060628
Li, 2019, Stability and compressibility of cation-doped high-entropy oxide MgCoNiCuZnO5, J. Phys. Chem. C., 123, 17735, 10.1021/acs.jpcc.9b04992
Liu, 2020, Zn0.1Ca0.1Sr0.4Ba0.4ZrO3: A non-equimolar multicomponent perovskite ceramic with low thermal conductivity, J. Eur. Ceram. Soc., 40, 6272, 10.1016/j.jeurceramsoc.2020.07.054
Xiong, 2022, Low thermal conductivity in A-site high entropy perovskite relaxor ferroelectric, Appl. Phys. Lett., 121, 10.1063/5.0102088
Wright, 2020, Size disorder as a descriptor for predicting reduced thermal conductivity in medium-and high-entropy pyrochlore oxides, Scr. Mater., 181, 76, 10.1016/j.scriptamat.2020.02.011