Novel non-equimolar SrLa(Al0.25Zn0.125Mg0.125Ga0.25Ti0.25)O4 high-entropy ceramics with excellent mechanical and microwave dielectric properties

Journal of the European Ceramic Society - Tập 43 - Trang 6909-6915 - 2023
Feng Li Lin1,2, Bing Liu1,3,2,4, Qing Wei Zhou2, Yu Hua Cheng1,2, Kai Xin Song1
1College of Electronic Information and Engineering, Hangzhou Dianzi University, Hangzhou, China
2Key Laboratory of Micro-nano Sensing and IoT of Wenzhou, Wenzhou Institute of Hangzhou Dianzi University, Wenzhou, 325038, China
3Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516001, Guangdong, China
4Qiantang Science and Technology Innovation Center, Hangzhou 310016, China

Tài liệu tham khảo

Reaney, 2006, Microwave dielectric ceramics for resonators and filters in mobile phone networks, J. Am. Ceram. Soc., 89, 2063, 10.1111/j.1551-2916.2006.01025.x Mirsaneh, 2008, Circularly polarized dielectric-loaded antennas: current technology and future challenges, Adv. Funct. Mater., 28, 2293, 10.1002/adfm.200701444 Xiao, 2018, Opportunistic multicast NOMA with security concerns in a 5G massive MIMO system, IEEE Commun. Mag., 56, 91, 10.1109/MCOM.2018.1700671 Chen, 2018, Structure and microwave dielectric properties of SrLa[Al1− x(Mg0. 5Ti0.5)x]O4 (x=0.2–0.8) ceramics, Ceram. Int., 44, 1984, 10.1016/j.ceramint.2017.10.142 Spitzer, 1962, Far infrared dielectric dispersion in BaTiO3, SrTiO3, and TiO2, Phys. Rev., 126, 1710, 10.1103/PhysRev.126.1710 Xiao, 2005, Microstructures and microwave dielectric characteristics of CaRAlO4 (R = Nd, Sm, Y) ceramics with tetragonal K2NiF4, Struct., J. Am. Ceram. Soc., 87, 2143, 10.1111/j.1151-2916.2004.tb06373.x Chen, 2003, SrLnAlO4 (LnNd and Sm) microwave dielectric ceramics, J. Electroceram, 10, 111, 10.1023/A:1025695722686 Peng, 2010, Improvement of microwave dielectric characteristics in SrLaAlO4 ceramics by Ca substitution, J. Am. Ceram. Soc., 93, 4066, 10.1111/j.1551-2916.2010.03990.x Xiang, 2021, High-entropy ceramics: present status, challenges, and a look forward, J. Adv. Ceram., 10, 385, 10.1007/s40145-021-0477-y Sarkar, 2019, High‐entropy oxides: fundamental aspects and electrochemical properties, Adv. Mater., 31, 1806236, 10.1002/adma.201806236 Sarkar, 2020, High entropy oxides: The role of entropy, enthalpy and synergy, Scr. Mater., 187, 43, 10.1016/j.scriptamat.2020.05.019 Zhang, 2019, Dense high-entropy boride ceramics with ultra-high hardness, Scr. Mater., 164, 135, 10.1016/j.scriptamat.2019.01.021 Qin, 2019, A high entropy silicide by reactive spark plasma sintering, J. Adv. Ceram., 8, 148, 10.1007/s40145-019-0319-3 Wei, 2019, High entropy carbide ceramics from different starting materials, J. Eur. Ceram. Soc., 39, 2989, 10.1016/j.jeurceramsoc.2019.04.006 Feng, 2019, Low‐temperature sintering of single‐phase, high‐entropy carbide ceramics, J. Am. Ceram. Soc., 102, 7217, 10.1111/jace.16672 Xiang, 2021, Microwave dielectric high-entropy ceramic Li(Gd0.2Ho0.2Er0.2Yb0.2Lu0.2)GeO4 with stable temperature coefficient for low-temperature cofired ceramic technologies, J. Mater. Sci. Technol., 93, 28, 10.1016/j.jmst.2021.03.057 Liu, 2022, Crystal structure and microwave dielectric properties of (Mg0.2Ni0.2Zn0.2Co0.2Mn0.2)2SiO4-A novel high-entropy ceramic, Ceram. Int., 48, 23307, 10.1016/j.ceramint.2022.04.317 Chen, 2023, Entropy regulation in LaNbO4-based fergusonite to implement high-temperature phase transition and promising dielectric properties, J. Adv. Ceram., 12, 1067, 10.26599/JAC.2023.9220739 Castle, 2018, Processing and properties of high-entropy ultra-high temperature carbides, Sci. Rep., 8, 8609, 10.1038/s41598-018-26827-1 Peng, 2019, Diffusion-controlled alloying of single-phase multi-principal transition metal carbides with high toughness and low thermal diffusivity, Appl. Phys. Lett., 114, 10.1063/1.5054954 Liu, 2021, A novel high-entropy (Sm0.2Eu0.2Tb0.2Dy0.2Lu0.2)2Zr2O7 ceramic aerogel with ultralow thermal conductivity, Ceram. Int., 47, 29960, 10.1016/j.ceramint.2021.07.170 Fan, 2005, Complex-permittivity measurement on high-Q materials via combined numerical approaches, IEEE Trans. Microw. Theory Tech., 53, 3130, 10.1109/TMTT.2005.855360 Agne, 2018, Heat capacity of Mg3Sb2, Mg3Bi2, and their alloys at high temperatur, Mater. Today Phys., 6, 83, 10.1016/j.mtphys.2018.10.001 Fan, 2008, Structural dependence of microwave dielectric properties of SrRAlO4 (R= Sm, Nd, La) ceramics: crystal structure refinement and infrared reflectivity study, Chem. Mater., 20, 4092, 10.1021/cm703273z Magrez, 2001, High internal stresses in Sr1−xLa1+xAl1−xMgxO4 solid solution (0≤x≤0.7) characterized by infrared and raman spectroscopies coupled with crystal structure refinement, Chem. Mater., 13, 3893, 10.1021/cm001209e Hadjiev, 1997, Optical phonons probe of the SrLaAlO4 crystal structure, J. Alloy. Compd. 251 (1-2), 7, 10.1016/S0925-8388(96)02759-4 Drozdowski, 1997, Study of SrLaAlO4 and SrLaGaO4 substrate crystals by raman spectroscopy, Acta Phys. Pol. A, 10.12693/APhysPolA.92.139 Liu, 2016, Structural evolution of SrLaAl1−x(Zn0.5Ti0.5)xO4 ceramics and effects on their microwave dielectric Properties, J. Mater. Chem. C., 4, 4684, 10.1039/C6TC00841K Sun, 2015, Raman spectra analysis for Ba[(Mg1−xNix)1/3Nb2/3]O3 microwave dielectric ceramics, AIP Adv., 5, 10.1063/1.4905740 Yan, 2020, Microwave dielectric properties of SrLa[Ga1−x (Mg0.5Ti0.5)x]O4 and SrLa[Ga1−x(Zn0.5Ti0.5)x]O4 (x=0.2–0.8) ceramics, Int. J. Appl. Ceram. Tec., 17, 790, 10.1111/ijac.13395 Davies, 2003, Communicating with wireless perovskites: cation order and zinc volatilization, J. Eur. Ceram. Soc., 23, 2461, 10.1016/S0955-2219(03)00156-0 Bosman, 1963, Temperature dependence of dielectric constants of cubic ionic compounds, Phys. Rev., 129, 1593, 10.1103/PhysRev.129.1593 Rysselberghe, 2002, Remarks concerning the Clausius-Mossotti, law, J. Phy. Chem., 36, 1152, 10.1021/j150334a007 Liao, 2011, New low‐loss microwave dielectric material ZnTiNbTaO8, J. Am. Ceram. Soc., 94, 3237, 10.1111/j.1551-2916.2011.04815.x Zhang, 2022, High-entropy (Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3 perovskite ceramics with A-site short-range disorder for thermoelectric applications, J. Mater. Sci. Technol., 97, 182, 10.1016/j.jmst.2021.05.016 Chen, 2022, Ab initio study of mechanical properties of hexagonal high-entropy ceramic (Mo0.25Nb0.25Ta0.25V0.25)(Al0.5Si0.5)2 with dual mixing of cation and anion sublattice, J. Phys. Chem. Solids, 165, 10.1016/j.jpcs.2022.110701 Lebowitz, 1993, Boltzmann's entropy and time's arrow, Phys. Today, 46, 32, 10.1063/1.881363 Li, 2021, High-entropy oxides: advanced research on electrical properties, Coatings, 11, 628, 10.3390/coatings11060628 Li, 2019, Stability and compressibility of cation-doped high-entropy oxide MgCoNiCuZnO5, J. Phys. Chem. C., 123, 17735, 10.1021/acs.jpcc.9b04992 Liu, 2020, Zn0.1Ca0.1Sr0.4Ba0.4ZrO3: A non-equimolar multicomponent perovskite ceramic with low thermal conductivity, J. Eur. Ceram. Soc., 40, 6272, 10.1016/j.jeurceramsoc.2020.07.054 Xiong, 2022, Low thermal conductivity in A-site high entropy perovskite relaxor ferroelectric, Appl. Phys. Lett., 121, 10.1063/5.0102088 Wright, 2020, Size disorder as a descriptor for predicting reduced thermal conductivity in medium-and high-entropy pyrochlore oxides, Scr. Mater., 181, 76, 10.1016/j.scriptamat.2020.02.011