Novel multilevel techniques for convergence acceleration in the solution of systems of equations arising from RBF-FD meshless discretizations

Journal of Computational Physics - Tập 392 - Trang 311-334 - 2019
Riccardo Zamolo1, Enrico Nobile1, Božidar Šarler2,3
1Department of Engineering and Architecture, University of Trieste, via Alfonso Valerio 10, 34127 Trieste, Italy
2Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva cesta 6, 1000, Ljubljana, Slovenia
3Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana, Slovenia

Tài liệu tham khảo

Frey, 2010 Li, 2013 Fornberg, 2015, Solving PDEs with radial basis functions, Acta Numer., 24, 215, 10.1017/S0962492914000130 Bollig, 2012, Solution to PDEs using radial basis function finite-differences (RBF-FD) on multiple GPUs, J. Comput. Phys., 231, 7133, 10.1016/j.jcp.2012.06.030 Tillenius, 2015, A scalable RBF-FD method for atmospheric flow, J. Comput. Phys., 298, 406, 10.1016/j.jcp.2015.06.003 Bayona, 2017, On the role of polynomials in RBF-FD approximations: II. Numerical solution of elliptic PDEs, J. Comput. Phys., 332, 257, 10.1016/j.jcp.2016.12.008 Flyer, 2016, Enhancing finite differences with radial basis functions: experiments on the Navier-Stokes equations, J. Comput. Phys., 316, 39, 10.1016/j.jcp.2016.02.078 Flyer, 2016, On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy, J. Comput. Phys., 321, 21, 10.1016/j.jcp.2016.05.026 Dehghan, 2017, The use of proper orthogonal decomposition (POD) meshless RBF-FD technique to simulate the shallow water equations, J. Comput. Phys., 351, 478, 10.1016/j.jcp.2017.09.007 Demkowicz, 1984, On some convergence results for FDM with irregular mesh, Comput. Methods Appl. Math., 42, 343 Šarler, 2006, Meshfree explicit local radial basis function collocation method for diffusion problems, Comput. Math. Appl., 51, 1269, 10.1016/j.camwa.2006.04.013 Bulgakov, 1998, Iterative solution of systems of equations in the dual reciprocity boundary element method for the diffusion equation, Int. J. Numer. Methods Eng., 43, 713, 10.1002/(SICI)1097-0207(19981030)43:4<713::AID-NME445>3.0.CO;2-8 van der Vorst, 1992, Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13, 631, 10.1137/0913035 Saad, 2003 McCormick, 1987, Multigrid Methods, 10.1137/1.9781611971057 Katz, 2009, Multicloud: multigrid convergence with a meshless operator, J. Comput. Phys., 228, 5237, 10.1016/j.jcp.2009.04.023 Stüben, 1999 Stüben, 2001, A review of algebraic multigrid, J. Comput. Appl. Math., 128, 281, 10.1016/S0377-0427(00)00516-1 Vertnik, 2019, Solution of three-dimensional temperature and turbulent velocity field in continuously cast steel billets with electromagnetic stirring by a meshless method, Eng. Anal. Bound. Elem., 104, 347, 10.1016/j.enganabound.2019.03.026 Brandt, 1977, Multi-level adaptive solutions to boundary-value problems, Math. Comput., 31, 333, 10.1090/S0025-5718-1977-0431719-X Southwell, 1946, Relaxation Methods in Theoretical Physics Stiefel, 1952, Über einige methoden der relaxationsrechnung, Z. Angew. Math. Phys., 3, 1, 10.1007/BF02080981 Fedorenko, 1964, The speed of convergence of one iterative process, USSR Comput. Math. Math., 4, 227, 10.1016/0041-5553(64)90253-8 Fedorenko, 1973, Iterative methods for elliptic difference equations, Russ. Math. Surv., 28, 129, 10.1070/RM1973v028n02ABEH001542 de la Vallee Poussin, 1968, An accelerated relaxation algorithm for iterative solution of elliptic equations, SIAM J. Numer. Anal., 5, 340, 10.1137/0705029 Settari, 1973, A generalization of the additive correction methods for the iterative solution of matrix equations, SIAM J. Numer. Anal., 10, 506, 10.1137/0710046 Blaheta, 1988, A multilevel method with overcorrection by aggregation for solving discrete elliptic problems, J. Comput. Appl. Math., 24, 227, 10.1016/0377-0427(88)90355-X Blaheta, 1986, A multilevel method with correction by aggregation for solving discrete elliptic problems, Appl. Math.-Czech, 31, 365, 10.21136/AM.1986.104214 Hutchinson, 1986, A multigrid method based on the additive correction strategy, Numer. Heat Transf., Part A, Appl., 9, 511 Braess, 1995, Towards algebraic multigrid for elliptic problems of second order, Computing, 55, 379, 10.1007/BF02238488 Vaněk, 1992, Acceleration of convergence of a two-level algorithm by smoothing transfer operators, Appl. Math.-Czech, 37, 265, 10.21136/AM.1992.104509 Vaněk, 1994 Vaněk, 1996, Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems, Computing, 56, 179, 10.1007/BF02238511 Vaněk, 2001, Convergence of algebraic multigrid based on smoothed aggregation, Numer. Math., 88, 559, 10.1007/s211-001-8015-y Leem, 2004, Algebraic multigrid (AMG) for saddle point systems from meshfree discretizations, Numer. Linear Algebra, 11, 293, 10.1002/nla.383 Seibold, 2009, Performance of algebraic multigrid methods for non-symmetric matrices arising in particle methods, Numer. Linear Algebra, 17, 433 Zamolo, 2018, Two algorithms for fast 2d node generation: application to RBF meshless discretization of diffusion problems and image halftoning, Comput. Math. Appl., 75, 4305, 10.1016/j.camwa.2018.03.031 Zamolo, 2019 Hardy, 1971, Multiquadric equations of topography and other irregular surfaces, J. Geophys. Res., 76, 1905, 10.1029/JB076i008p01905 Franke, 1980 Franke, 1982, Scattered data interpolation: tests of some methods, Math. Comput., 38, 181 Lee, 2003, Local multiquadric approximation for solving boundary value problems, Comput. Mech., 30, 396, 10.1007/s00466-003-0416-5 Sarra, 2009, Multiquadric radial basis function approximation methods for the numerical solution of partial differential equations, Comput. Mech. Adv., 2, 1 Fasshauer, 2007, Meshfree Approximation Methods With Matlab, vol. 6 Horn, 1990 Chan, 1994, Domain decomposition and multigrid algorithms for elliptic problems on unstructured meshes, Electron. Trans. Numer. Anal., 2, 171 Hackbusch, 1994, Iterative Solution of Large Sparse Systems of Equations, vol. 95 Larsson, 2005, Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions, Comput. Math. Appl., 49, 103, 10.1016/j.camwa.2005.01.010 Zamolo, 2017, Numerical analysis of heat conduction problems on 3d general-shaped domains by means of a RBF collocation meshless method, J. Phys. Conf. Ser., 923, 10.1088/1742-6596/923/1/012034 Cuthill, 1969, Reducing the bandwidth of sparse symmetric matrices, 157