Novel methods improve prediction of species’ distributions from occurrence data

Ecography - Tập 29 Số 2 - Trang 129-151 - 2006
Jane Elith, Catherine H. Graham, Robert P. Anderson, Miroslav Dudı́k, Simon Ferrier, Antoine Guisan, Robert J. Hijmans, Falk Huettmann, John R. Leathwick, Anthony Lehmann, Jin Li, Lúcia G. Lohmann, Bette A. Loiselle, Glenn Manion, Craig Moritz, Miguel Nakamura, Yoshinori Nakazawa, Jacob McC. Overton, A. Townsend Peterson, Steven J. Phillips, Karen Richardson, Ricardo Scachetti‐Pereira, Robert E. Schapire, Jorge Soberón, Stephen E. Williams, Mary S. Wisz, Niklaus E. Zimmermann

Tóm tắt

Prediction of species’ distributions is central to diverse applications in ecology, evolution and conservation science. There is increasing electronic access to vast sets of occurrence records in museums and herbaria, yet little effective guidance on how best to use this information in the context of numerous approaches for modelling distributions. To meet this need, we compared 16 modelling methods over 226 species from 6 regions of the world, creating the most comprehensive set of model comparisons to date. We used presence‐only data to fit models, and independent presence‐absence data to evaluate the predictions. Along with well‐established modelling methods such as generalised additive models and GARP and BIOCLIM, we explored methods that either have been developed recently or have rarely been applied to modelling species’ distributions. These include machine‐learning methods and community models, both of which have features that may make them particularly well suited to noisy or sparse information, as is typical of species’ occurrence data. Presence‐only data were effective for modelling species’ distributions for many species and regions. The novel methods consistently outperformed more established methods. The results of our analysis are promising for the use of data from museums and herbaria, especially as methods suited to the noise inherent in such data improve.

Từ khóa


Tài liệu tham khảo

10.1046/j.1365-2699.2003.00867.x

10.1034/j.1600-0706.2002.t01-1-980116.x

10.1016/S0006-3207(00)00074-4

10.1111/j.1365-2486.2004.00828.x

10.1111/j.1365-2486.2005.01000.x

10.1016/S0304-3800(02)00205-3

Austin M. P., 1981, Observational analysis of environmental gradients, Proc. Ecol. Soc. Aust., 11, 109

10.2307/3236167

Austin M. P. et al. 1995. Modelling of landscape patterns and processes using biological data. Subproject 5: simulated data case study. – In: Division of Wildlife and Ecology CSIRO.

10.1046/j.1354-1013.2001.00467.x

Barry S. C. and Elith J. in press. Error and uncertainty in habitat models. – J. Appl. Ecol.

Bio A. M. F. 2000. Does vegetation suit our models? Data and model assumptions and the assessment of species distribution in space. – Fac. of Geographical Sciences Utrecht Univ. Netherlands Ph.D. thesis.

10.2307/1942065

10.1016/S0304-3800(02)00200-4

10.1111/j.0906-7590.2004.03764.x

Brown J., 1998, Biogeography

10.1890/04-0906

Burnham K. P., 2002, Model selection and inference: a practical information – theoretic approach

Busby J. R., 1991, Nature conservation: cost effective biological surveys and data analysis, 64

10.1007/BF00051966

10.1023/A:1021350813586

Cicero C., 2004, Barriers to sympatry between avian sibling species (Paridae: Beolophus) in tenuous secondary contact, Evolution, 58, 1573

10.1177/001316446002000104

Elith J., 2002, Predicting species occurrences: issues of accuracy and scale, 303

10.1080/10635150252899806

Ferrier S. and Watson G. 1997. An evaluation of the effectiveness of environmental surrogates and modelling techniques in predicting the distribution of biological diversity. – Environment Australia Canberra <http://www.deh.gov.au/biodiversity/publications/technical/surrogates/>.

10.1023/A:1021302930424

10.1023/A:1021374009951

10.1017/S0376892997000088

10.1214/aos/1016218223

10.1080/10635150252899789

10.1214/06-BA102

Gómez Pompa A., 1970, La Flora de Veracruz, Anales del Inst. de Biología de la UNAM, Bot., 31, 137

Goolsby J. A., 2004, Potential distribution of the invasive old world climbing, fern, Lygodium microphyllum in north and south America, Nat. Areas J., 24, 351

10.1016/j.tree.2004.07.006

10.1111/j.0014-3820.2004.tb00461.x

10.1073/pnas.0505754103

10.1016/S0304-3800(00)00354-9

10.1046/j.1365-2699.2003.00914.x

10.1111/j.1461-0248.2005.00792.x

10.2307/3237224

10.1148/radiology.143.1.7063747

10.1016/0169-5347(94)90177-5

10.1007/978-1-4757-3462-1

10.1007/978-0-387-21606-5

10.1111/j.1523-1739.2000.98543.x

10.1002/joc.1276

10.1016/S0304-3800(02)00203-X

10.1890/0012-9658(2002)083[2027:ENFAHT]2.0.CO;2

10.2193/0022-541X(2005)069[0466:DASMIT]2.0.CO;2

10.1073/pnas.092538699

10.1109/PROC.1982.12425

10.1890/1051-0761(2003)013[0853:ASAOFA]2.0.CO;2

10.1890/02-5364

10.2193/0022-541X(2004)068[0774:UAIOLR]2.0.CO;2

10.1023/A:1021394628607

10.1890/0012-9658(2001)082[2560:CIBTSI]2.0.CO;2

10.1111/j.1365-2427.2005.01448.x

Leathwick J. R. et al. in press. Variation in demersal fish species richness in the oceans surrounding New Zealand: an analysis using boosted regression trees. – Mar. Ecol. Progr. Ser.

10.1111/j.0906-7590.2005.03957.x

10.1111/j.1523-1739.2003.00233.x

10.1162/neco.1995.7.1.72

10.1111/j.1466-822X.2005.00186.x

10.1111/j.1523-1739.2004.00328_18_3.x

10.1111/j.1365-2664.2005.01101.x

10.1098/rspb.2005.3164

10.1016/S0304-3800(02)00197-7

10.1111/j.1654-1103.2004.tb02263.x

10.1016/0169-2070(92)90028-8

10.1016/S0304-3800(00)00322-7

10.1016/S0304-3800(99)00227-6

Pearce J. L. and Boyce M. S. in press. Modelling distribution and abundance with presence‐only data. – J. Appl. Ecol. in press.

10.1006/jema.2001.0425

10.1086/378926

Peterson A. T., 2005, Kansas gap analysis: the importance of validating distributional models before using them, 230

Peterson A. T., 2004, Reconstructing the pleistocene geography of the Aphelocoma jays (Corvidae), Biodiv. Res., 10, 237

Phillips S. J. Dudik M. and Schapire R. E. 2004. A maximum entropy approach to species distribution modeling. – In: Proc. of the 21st International Conference on Machine Learning Banff Canada 2004.

10.1016/j.ecolmodel.2005.03.026

Pielke Jr R. A., 2003, Models in ecosystem science, 111

Randin C. F. et al. in press. Are species distribution models transferable in space? – J. Biogeogr.

Rapoport E. H., 1982, Aerography

10.1038/nature02205

10.1890/03-5374

10.1046/j.1461-0248.2003.00554.x

Ridgeway G., 1999, The state of boosting, Comput. Sci. Stat., 31, 172

10.1111/j.2006.0906-7590.04272.x

10.1111/j.0021-8901.2004.00903.x

10.1071/PC030235

10.1111/j.1365-2699.2004.01076.x

10.1007/978-1-4899-3324-9

10.1111/j.0906-7590.2004.03823.x

Sneath P. H. A., 1973, Numerical taxonomy – the principles and practice of numerical classification

10.1023/A:1008987010383

10.17161/bi.v2i0.4

Spiegelhalter D., 2003, WinBUGS user manual, version 1.4

Spiegelhalter D. J., 2003, Bayesian measures of model complexity and fit, J. R. Stat. Soc. Ser. B, 64, 583, 10.1111/1467-9868.00353

10.1080/136588199241391

10.1016/S0304-3800(01)00388-X

10.1038/nature02121

10.1016/S0022-1694(96)03128-9

10.1111/j.1365-2486.2004.00859.x

10.1890/03-0148

10.1073/pnas.0409902102

Tibshirani R., 1996, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Ser. B, 58, 267

10.1016/S0169-5347(03)00070-3

10.1890/1051-0761(2001)011[1722:IPFPCT]2.0.CO;2

10.2307/3808148

10.1046/j.1365-2699.1999.00273.x

10.2307/2997706

Wintle B. A. and Bardos D. C. in press. Modelling species habitat relationships with spatially autocorrelated observation data. – Ecol. Appl.

10.2307/3236170

10.1016/S0304-3800(02)00199-0

10.1002/1097-0258(20000715)19:13<1771::AID-SIM485>3.0.CO;2-P