Novel low melting point quaternary eutectic system for solar thermal energy storage
Tài liệu tham khảo
Wang, 2010, Fatty acid eutectic/polymethyl methacrylate composite as form-stable phase change material for thermal energy storage, Appl Energy, 87, 2660, 10.1016/j.apenergy.2010.01.010
Oró, 2012, Review on phase change materials (PCMs) for cold thermal energy storage applications, Appl Energy, 99, 513, 10.1016/j.apenergy.2012.03.058
Zhou, 2012, Review on thermal energy storage with phase change materials (PCMs) in building applications, Appl Energy, 92, 593, 10.1016/j.apenergy.2011.08.025
Joulin, 2011, Experimental and numerical investigation of a phase change material: thermal-energy storage and release, Appl Energy, 88, 2454, 10.1016/j.apenergy.2011.01.036
Cai, 2011, Effects of nano-SiO2 on morphology, thermal energy storage, thermal stability, and combustion properties of electrospun lauric acid/PET ultrafine composite fibers as form-stable phase change materials, Appl Energy, 88, 2106, 10.1016/j.apenergy.2010.12.071
Zhang, 2012, Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material, Appl Energy, 91, 426, 10.1016/j.apenergy.2011.10.014
Smith RD, Pools DR, Li C, Carlson DK, Peterson DR (Rocket Research Company, WA). Chemical energy storage for solar thermal conversion. Livermore (CA): Sandia Laboratories; 1979. Report No: SAND 79-8198. Contract No.: 18-2573.
Steinfeld, 2001, Solar thermochemical process technology, 237
Fletcher, 2001, Solar thermal processing: a review, J Sol Energy Eng, 123, 63, 10.1115/1.1349552
Cavallaro, 2010, Fuzzy TOPSIS approach for assessing thermal-energy storage in concentrated solar power (CSP) systems, Appl Energy, 87, 496, 10.1016/j.apenergy.2009.07.009
Bradshaw RW, Siegel NP. Molten nitrate salt development for thermal energy storage in parabolic trough solar power systems. In: ASME proceedings of energy sustainability, August 10–14, Jacksonville, FL; 2008.
Rogers, 1982, Melting-crystallization and premelting properties of sodium nitrate–potassium nitrate: enthalpies and heat capacities, J Chem Eng Data, 27, 424, 10.1021/je00030a017
Kearney, 2003, Assessment of a molten salt heat transfer fluid in a parabolic trough solar field, J Sol Energy Eng, 125, 170, 10.1115/1.1565087
Peng, 2010, The preparation and properties of multi-component molten salts, Appl Energy, 87, 2812, 10.1016/j.apenergy.2009.06.022
Maranowski LG, Maru HC. Latent heat thermal energy storage systems above 450.8°C. In: Proceedings of 12th intersociety energy conversion, engineering conference; 1977. p. 55–66.
Maru HC, Dullea JF, Kardas A, Paul L, Marianowski LG, Ong E. Molten salts energy storage systems. Final report of the institute of gas technology. Chicago; 1978.
Philips WM, Stears JW. Advanced latent heat of fusion thermal energy storage for solar power stations. In: Proceedings of 20th intersociety energy conversion engineering conference, August 18–23, Miami Beach, FL; 1985. p. 384–91.
Mayo KE. Heat source systems. United States patent US 3605720; 1971.
Heidenreich GR, Parekh MB. Thermal energy storage for organic Rankine cycle solar ynamic space power systems. In: Proceedings of 21st intersociety energy conversion engineering conference, August 25–29, San Diego, CA; 1986. p. 791–7.
Garkushin IK, Trunin AC, Miftakhov TT, Dibirov MA. Salt heat storage composition. United States patent US 1036734; 1983.
Takahashi, 1988, Heat capacities and latent heat of LiNO3, NaNO3 and KNO3, Int J Thermophys, 9, 1081, 10.1007/BF01133275
Carling, 1983, Heat capacities of NaNO3 and KNO3 up to 800K, Thermochim Acta, 60, 265, 10.1016/0040-6031(83)80248-2
James, 1963, Densities of some molten alkali nitrate and sulphate mixtures, J Chem Eng Data, 8, 469, 10.1021/je60018a063
Smith, 1961, Volumetric properties of the molten system (Li, K)–(Cl, NO3), J Chem Eng Data, 6, 493, 10.1021/je60011a004
Wang, 2012, Thermal stability of the eutectic composition in LiNO3–NaNO3–KNO3 ternary system used for thermal energy storage, Sol Energy Mater Sol Cells, 100, 162, 10.1016/j.solmat.2012.01.009
Wang T, Reddy RG. Thermal stability of low melting point NaNO3–NaNO2–KNO3 ternary system for thermal storage. In: Proceedings of 2012 SME annual meeting & exhibit, February 19–22, Seattle, WA; 2012. p. 1–6.
Guillot, 2012, Corrosion effects between molten salts and thermal storage material for concentrated solar power plants, Appl Energy, 94, 174, 10.1016/j.apenergy.2011.12.057
Qin, 2012, Thermocline stability criterions in single-tanks of molten salt thermal energy storage, Appl Energy, 97, 816, 10.1016/j.apenergy.2012.02.048
Sohal MS, Ebner MA, Sabharwall P, Sharpe P. Engineering database of liquid salt thermophysical and thermochemical properties. Idaho Falls (ID): Idaho National Laboratory; 2010. Report No: INL/EXT-10-18297. Contract DE-AC07-05ID14517. Sponsored by the Department of Energy.
Mantha, 2012, Thermodynamic modeling of eutectic point in the LiNO3–NaNO3–KNO3 ternary system, J Phase Equilib Diffus, 33, 110, 10.1007/s11669-012-0005-4
Reddy, 2012, Thermodynamic properties of potassium nitrate–magnesium nitrate compound [2KNO3·Mg(NO3)2], Thermochim Acta, 531, 6, 10.1016/j.tca.2011.12.010
Mantha D, Wang T, Reddy RG. Novel low melting point quaternary molten salt mixture for solar energy applications. Solar Energy Mater Solar Cells, forthcoming.
Zhang, 2010, Thermodynamic properties of C4mim[Tf2N] ionic liquids, Miner Process Extr Metall, 6, 71, 10.1179/037195510X12665949176490
Lim, 1987, Vapor pressure measurements on molybdena–alumina, J Catal, 108, 175, 10.1016/0021-9517(87)90164-3
Pankajavalli, 1998, Vapor pressure of C60 by a transpiration method using a horizontal thermobalance, Thermochim Acta, 316, 101, 10.1016/S0040-6031(98)00304-9
Jeevan, 2008, Vapor pressure of tetrakis(1,1,1-trifluro-5,6-dimethylheptanedionato)zirconium(IV) and dichlorobis(η5 cyclopentadienyl) zirconium(IV) by TG-based transpiration technique, Thermochim Acta, 478, 41, 10.1016/j.tca.2008.08.010
Maeso, 1993, The heat capacities of LiNO3 and CsNO3 from 350 to 700K, Thermochim Acta, 222, 195, 10.1016/0040-6031(93)80552-L
Hirai, 1958, Bulk viscosity of liquids, J Appl Phys, 29, 810, 10.1063/1.1723290
Hirai, 1959, Bulk viscosity of polymeric systems, J Polym Sci, 37, 51, 10.1002/pol.1959.1203713104
Petersen, 1961, Densities of some salt mixtures, J Chem Eng Data, 6, 540, 10.1021/je60011a018
Nasch, 1995, Density and thermal expansion of molten manganese, iron, nickel, copper, aluminum and tin by means of the gamma-ray attenuation technique, Phys Chem Liq, 29, 43, 10.1080/00319109508030263
Nissen, 1982, Thermophysical properties of the equimolar mixture NaNO3–KNO3 from 300°C to 600°C, J Chem Eng Data, 27, 269, 10.1021/je00029a012
Reddy RG. Novel molten salts thermal energy storage for concentrating solar power generation. The University of Alabama. <http://www1.eere.energy.gov/solar/review_meeting/pdfs/prm2010_ualabama.pdf>.