Novel low melting point quaternary eutectic system for solar thermal energy storage

Applied Energy - Tập 102 - Trang 1422-1429 - 2013
Tao Wang1, Divakar Mantha1, Ramana G. Reddy1
1Department of Metallurgical and Materials Engineering, University of Alabama, P.O. Box 870202, 116 Houser Hall, Tuscaloosa, AL 35487-0202, USA

Tài liệu tham khảo

Wang, 2010, Fatty acid eutectic/polymethyl methacrylate composite as form-stable phase change material for thermal energy storage, Appl Energy, 87, 2660, 10.1016/j.apenergy.2010.01.010 Oró, 2012, Review on phase change materials (PCMs) for cold thermal energy storage applications, Appl Energy, 99, 513, 10.1016/j.apenergy.2012.03.058 Zhou, 2012, Review on thermal energy storage with phase change materials (PCMs) in building applications, Appl Energy, 92, 593, 10.1016/j.apenergy.2011.08.025 Joulin, 2011, Experimental and numerical investigation of a phase change material: thermal-energy storage and release, Appl Energy, 88, 2454, 10.1016/j.apenergy.2011.01.036 Cai, 2011, Effects of nano-SiO2 on morphology, thermal energy storage, thermal stability, and combustion properties of electrospun lauric acid/PET ultrafine composite fibers as form-stable phase change materials, Appl Energy, 88, 2106, 10.1016/j.apenergy.2010.12.071 Zhang, 2012, Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material, Appl Energy, 91, 426, 10.1016/j.apenergy.2011.10.014 Smith RD, Pools DR, Li C, Carlson DK, Peterson DR (Rocket Research Company, WA). Chemical energy storage for solar thermal conversion. Livermore (CA): Sandia Laboratories; 1979. Report No: SAND 79-8198. Contract No.: 18-2573. Steinfeld, 2001, Solar thermochemical process technology, 237 Fletcher, 2001, Solar thermal processing: a review, J Sol Energy Eng, 123, 63, 10.1115/1.1349552 Cavallaro, 2010, Fuzzy TOPSIS approach for assessing thermal-energy storage in concentrated solar power (CSP) systems, Appl Energy, 87, 496, 10.1016/j.apenergy.2009.07.009 Bradshaw RW, Siegel NP. Molten nitrate salt development for thermal energy storage in parabolic trough solar power systems. In: ASME proceedings of energy sustainability, August 10–14, Jacksonville, FL; 2008. Rogers, 1982, Melting-crystallization and premelting properties of sodium nitrate–potassium nitrate: enthalpies and heat capacities, J Chem Eng Data, 27, 424, 10.1021/je00030a017 Kearney, 2003, Assessment of a molten salt heat transfer fluid in a parabolic trough solar field, J Sol Energy Eng, 125, 170, 10.1115/1.1565087 Peng, 2010, The preparation and properties of multi-component molten salts, Appl Energy, 87, 2812, 10.1016/j.apenergy.2009.06.022 Maranowski LG, Maru HC. Latent heat thermal energy storage systems above 450.8°C. In: Proceedings of 12th intersociety energy conversion, engineering conference; 1977. p. 55–66. Maru HC, Dullea JF, Kardas A, Paul L, Marianowski LG, Ong E. Molten salts energy storage systems. Final report of the institute of gas technology. Chicago; 1978. Philips WM, Stears JW. Advanced latent heat of fusion thermal energy storage for solar power stations. In: Proceedings of 20th intersociety energy conversion engineering conference, August 18–23, Miami Beach, FL; 1985. p. 384–91. Mayo KE. Heat source systems. United States patent US 3605720; 1971. Heidenreich GR, Parekh MB. Thermal energy storage for organic Rankine cycle solar ynamic space power systems. In: Proceedings of 21st intersociety energy conversion engineering conference, August 25–29, San Diego, CA; 1986. p. 791–7. Garkushin IK, Trunin AC, Miftakhov TT, Dibirov MA. Salt heat storage composition. United States patent US 1036734; 1983. Takahashi, 1988, Heat capacities and latent heat of LiNO3, NaNO3 and KNO3, Int J Thermophys, 9, 1081, 10.1007/BF01133275 Carling, 1983, Heat capacities of NaNO3 and KNO3 up to 800K, Thermochim Acta, 60, 265, 10.1016/0040-6031(83)80248-2 James, 1963, Densities of some molten alkali nitrate and sulphate mixtures, J Chem Eng Data, 8, 469, 10.1021/je60018a063 Smith, 1961, Volumetric properties of the molten system (Li, K)–(Cl, NO3), J Chem Eng Data, 6, 493, 10.1021/je60011a004 Wang, 2012, Thermal stability of the eutectic composition in LiNO3–NaNO3–KNO3 ternary system used for thermal energy storage, Sol Energy Mater Sol Cells, 100, 162, 10.1016/j.solmat.2012.01.009 Wang T, Reddy RG. Thermal stability of low melting point NaNO3–NaNO2–KNO3 ternary system for thermal storage. In: Proceedings of 2012 SME annual meeting & exhibit, February 19–22, Seattle, WA; 2012. p. 1–6. Guillot, 2012, Corrosion effects between molten salts and thermal storage material for concentrated solar power plants, Appl Energy, 94, 174, 10.1016/j.apenergy.2011.12.057 Qin, 2012, Thermocline stability criterions in single-tanks of molten salt thermal energy storage, Appl Energy, 97, 816, 10.1016/j.apenergy.2012.02.048 Sohal MS, Ebner MA, Sabharwall P, Sharpe P. Engineering database of liquid salt thermophysical and thermochemical properties. Idaho Falls (ID): Idaho National Laboratory; 2010. Report No: INL/EXT-10-18297. Contract DE-AC07-05ID14517. Sponsored by the Department of Energy. Mantha, 2012, Thermodynamic modeling of eutectic point in the LiNO3–NaNO3–KNO3 ternary system, J Phase Equilib Diffus, 33, 110, 10.1007/s11669-012-0005-4 Reddy, 2012, Thermodynamic properties of potassium nitrate–magnesium nitrate compound [2KNO3·Mg(NO3)2], Thermochim Acta, 531, 6, 10.1016/j.tca.2011.12.010 Mantha D, Wang T, Reddy RG. Novel low melting point quaternary molten salt mixture for solar energy applications. Solar Energy Mater Solar Cells, forthcoming. Zhang, 2010, Thermodynamic properties of C4mim[Tf2N] ionic liquids, Miner Process Extr Metall, 6, 71, 10.1179/037195510X12665949176490 Lim, 1987, Vapor pressure measurements on molybdena–alumina, J Catal, 108, 175, 10.1016/0021-9517(87)90164-3 Pankajavalli, 1998, Vapor pressure of C60 by a transpiration method using a horizontal thermobalance, Thermochim Acta, 316, 101, 10.1016/S0040-6031(98)00304-9 Jeevan, 2008, Vapor pressure of tetrakis(1,1,1-trifluro-5,6-dimethylheptanedionato)zirconium(IV) and dichlorobis(η5 cyclopentadienyl) zirconium(IV) by TG-based transpiration technique, Thermochim Acta, 478, 41, 10.1016/j.tca.2008.08.010 Maeso, 1993, The heat capacities of LiNO3 and CsNO3 from 350 to 700K, Thermochim Acta, 222, 195, 10.1016/0040-6031(93)80552-L Hirai, 1958, Bulk viscosity of liquids, J Appl Phys, 29, 810, 10.1063/1.1723290 Hirai, 1959, Bulk viscosity of polymeric systems, J Polym Sci, 37, 51, 10.1002/pol.1959.1203713104 Petersen, 1961, Densities of some salt mixtures, J Chem Eng Data, 6, 540, 10.1021/je60011a018 Nasch, 1995, Density and thermal expansion of molten manganese, iron, nickel, copper, aluminum and tin by means of the gamma-ray attenuation technique, Phys Chem Liq, 29, 43, 10.1080/00319109508030263 Nissen, 1982, Thermophysical properties of the equimolar mixture NaNO3–KNO3 from 300°C to 600°C, J Chem Eng Data, 27, 269, 10.1021/je00029a012 Reddy RG. Novel molten salts thermal energy storage for concentrating solar power generation. The University of Alabama. <http://www1.eere.energy.gov/solar/review_meeting/pdfs/prm2010_ualabama.pdf>.