Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Than hoạt tính từ oxit sắt hiệu suất cao mới cho việc loại bỏ phenol: cân bằng, động học và nhiệt động học
Tóm tắt
Một loạt các loại than hoạt tính từ oxit sắt (MAC) mới đã được chế tạo thông qua phương pháp một bước đơn giản từ vỏ bưởi, sử dụng nước ngâm axit hydrochloric làm tác nhân kích hoạt hóa học và tiền chất oxit sắt. Kết quả phân tích cho thấy rằng MAC được chế tạo thông qua kích hoạt vật lý hóa học ở 973 K có diện tích bề mặt tương đối cao là 760 m2/g và có thể được tách ra khỏi nước nhanh chóng dưới một trường điện từ mức độ vừa phải. Các thí nghiệm hấp phụ phenol lên MAC đã được nghiên cứu về cân bằng, mô hình động học và nhiệt động học. Dữ liệu cân bằng được mô tả tốt nhất bởi mô hình Langmuir, và khả năng hấp phụ tối đa ước tính của MAC-973 lên tới 1.1 × 102 mg/g ở 298 K. Phản ứng hóa học được phát hiện là tham số điều khiển tốc độ cho hệ thống hấp phụ phenol-MAC này do sự phù hợp mạnh mẽ với mô hình động học bậc hai giả.
Từ khóa
#than hoạt tính #oxit sắt #hấp phụ phenol #mô hình Langmuir #động học #nhiệt động họcTài liệu tham khảo
G.C. Chen, X.Q. Shan, Y.S. Wang, B. Wen, Z.G. Pei, Y.N. Xie, T. Liu, J.J. Pignatello, Adsorption of 2,4,6-trichlorophenol by multi-walled carbon nanotubes as affected by Cu(II). Water Res. 43, 2409–2418 (2009)
S.M. Alshehri, M. Naushad, T. Ahamad, Z.A. Alothman, A. Aldalbahi, Synthesis, characterization of curcumin based eco friendly antimicrobial bio-adsorbent for the removal of phenol from aqueous medium. Chem. Eng. J. 254, 181–189 (2014)
J. Han, Z. Du, W. Zou, H. Li, C. Zhang, In-situ improved phenol adsorption at ions-enrichment interface of porous adsorbent for simultaneous removal of copper ions and phenol. Chem. Eng. J. 262, 571–578 (2015)
Z. Wang, X. Liu, M. Lv, J. Meng, Simple synthesis of magnetic mesoporous FeNi/ carbon composites with a large capacity for the immobilization of biomolecules. Carbon 11, 3182–3189 (2010)
P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao, C. Lai, Z. Wei, C. Huang, G.X. Xie, Use of iron oxide nanomaterials in wastewater treatment: a review. Sci. Total Environ. 424, 1–10 (2012)
Y. Liu, Z. Zeng, G. Zeng, L. Tang, Y. Pang, Z. Li, C. Liu, X. Lei, M. Wu, P. Ren, Immobilization of laccase on magnetic bimodal mesoporous carbon and the application in the removal of phenolic compounds. Bioresour. Technol. 115, 21–26 (2012)
K.G. Raj, P.A. Joy, Coconut shell based activated carbon–iron oxide magnetic nanocomposite for fast and efficient removal of oil spills. J. Environ. Chem. Eng. 3, 2068–2075 (2015)
Y.F. Zhu, E. Kockrick, S. Kaskel, T. Ikoma, N. Hanagata, Nanocasting route to ordered mesoporous carbon with FePt nanoparticles and its phenol adsorption property. J. Phys. Chem. C 113, 5998–6002 (2009)
G.D. Yang, L. Tang, G.M. Zeng, Simultaneous removal of lead and phenol contamination from water by nitrogen-functionalized magnetic ordered mesoporous carbon. Chem. Eng. J. 259, 854–864 (2015)
D. Mohan, A. Sarswat, V.K. Singh, M. Alexandre-Franco, C.U. Pittman, Development of magnetic activated carbon from almond shells for trinitrophenol removal from water. Chem. Eng. J. 172, 1111–1125 (2011)
L.C. Oliveira, R.V. Rios, J.D. Fabris, V. Garg, K. Sapag, R.M. Lago, Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water. Carbon 40, 2177–2183 (2002)
Sh.L. Zhang, L. Ch. Tao, M. Jiang, G.J. Gou. Z.W. Zhou, Single-step synthesis of magnetic activated carbon from peanut shell. Mater. Lett. 157, 281–284 (2015)
Z.A. Zainal, R. Ali, C.H. Lean, K.N. Seetharamu. Prediction of performance of a downdraft gasifier using equilibrium modeling for different biomass materials. Energy. Conversat. Manag. 42, 1499–1515 (2001).
R. Ströbel, J. Garche, P.T. Moseley, L. Jörissen, G. Wolf, Hydrogen storage by carbon materials. J. Power Sources 159, 781–801 (2006)
S. Biniak, G. Szymanski, J. Siedlewski, A. Swiatkowski, The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon 35(12), 1799–1810 (1997)
Y. Huang, Z. Dong, D. Jia, Z. Guo, W.I. Cho, Preparation and characterization of core–shell structure Fe3O4/C nanoparticles with unique stability and high electrochemical performance for lithium-ion battery anode material. Electrochim. Acta 56, 9233–9239 (2011)
M.H. Do, N.H. Phan, T.D. Nguyen, T.T. Pham, V.K. Nguyen, T.T. Vu, T.K. Nguyen, Activated carbon/Fe3O4 nanoparticle composite: fabrication, methyl orange removal and regeneration by hydrogen peroxide. Chemosphere 85(8), 1269–1276 (2011)
L. Zhang, W.L. Jiao, J. He, A.J. Zhang, Synthesis of PAA/NiFe2O4 composite nanoparticles and the effect of microstructure on magnetism. J. Alloys Compd. 577, 538–542 (2013)
A.A. Ahmad, B.H. Hameed, N. Aziz, Adsorption of direct dyes on palm ash: Kinetic and equilibrium modeling. J. Hazard. Mater. 141, 70–76 (2007)
Y.S. Ho, Review of second-order models for adsorption systems. J. Hazard. Mater. 136, 681–689 (2006)
G. Dursun, H. Çiçek, A.Y. Dursun, Adsorption of phenol from aqueous solution by using carbonised beet pulp. J. Hazard. Mater. 125, 175–182 (2005)
L. Zhang, X. Li, L.J. Yang, Y. Li, H. Chang, X. Chu, J. Zhang, X. Wang, S. An, A rapid and selective isolation of rhodium from aqueous solution using nano-Al2O3. J. Chem. Eng. Data 57(10), 2647–2653 (2012)
R.S. Juang, F. Ch Wu, R.L. Tseng, Mechanism of adsorption of dyes and phenols from water using activated carbons prepared from plum kernels. J. Colloid Interface Sci. 227, 437–444 (2000)
I.D. Mall, V.C. Srivastava, N.K. Argawal. Removal of orange-G and methyl violet dyes by adsorption onto bagasse fly ash-kinetic study and equilibrium isotherm analyses. Dyes Pigments 69 (2006) 210–233.
C. Ng, J.N. Losso, W.E. Marshall, R.R. Rao, Physical and chemical properties of selected agricultural byproduct-based activated carbons and their ability to adsorb geosmin. Bioresour. Technol. 84, 177–185 (2002)
T.W. Weber, R.K. Chakkravorti, Pore and solid diffusion models for fixed bed adsorbers. AIChE J. 20, 228–238 (1974)
Y.F. Zhu, L.X. Zhang, F.M. Schappacher, R. Pöttgen, J.L. Shi, S. Kaskel, Synthesis of magnetically separable porous carbon microspheres and their adsorption properties of phenol and nitrobenzene from aqueous solution. J. Phys. Chem. C 112, 8623–8628 (2008)
N. Soudani, S. Souissi-najar, A. Ouederni, Influence of nitric acid concentration on characteristics of olive stone based activated carbon. Chin. J. Chem. Eng. 21, 1425–1430 (2013)
A. Rathinam, J.R. Rao, B.U. Nair, Adsorption of phenol onto activated carbon from seaweed: Determination of the optimal experimental parameters using factorial design. J. Taiwan Inst. Chem. Eng. 42, 952–956 (2011)
M. Kilic, E. Apaydin-Varol, A.E. Pütün, Hydrothermal treatment of electric arc furnace dust. J. Hazard. Mater. 189, 397–402 (2011)
Q.S. Liu, T. Zheng, P. Wang, J.P. Jiang, N. Li, Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. Chem. Eng. J. 157, 348–356 (2010)