Novel glucose-lowering drugs and the risk of acute kidney injury in routine care; the Stockholm CREAtinine Measurements (SCREAM) project
Tóm tắt
Từ khóa
Tài liệu tham khảo
Zheng Y, Ley SH, Hu FB (2018) Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 14(2):88–98
Gallo LA, Wright EM, Vallon V (2015) Probing SGLT2 as a therapeutic target for diabetes: basic physiology and consequences. Diabetes Vasc Dis Res 12(2):78–89
Heerspink HJL et al (2020) Dapagliflozin in patients with chronic kidney disease. N Engl J Med 383(15):1436–1446
Perkovic V et al (2019) Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 380(24):2295–2306
Neal B et al (2017) Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 377(7):644–657
Wanner C et al (2016) Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 375(4):323–334
Zinman B et al (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373(22):2117–2128
Buse JB et al (2020) 2019 Update to: management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 63(2):221–228
Cosentino F et al (2020) 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J 41(2):255–323
Hahn K et al (2016) Acute kidney injury from SGLT2 inhibitors: potential mechanisms. Nat Rev Nephrol 12(12):711–712
FDA Drug Safety Communication: FDA strengthens kidney warnings for diabetes medicines canagliflozin (Invokana, Invokamet) and dapagliflozin (Farxiga, Xigduo XR). 2016. https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-strengthens-kidney-warnings-diabetes-medicines-canagliflozin. Accessed Jan 2022
Zhao M et al (2020) Network meta-analysis of novel glucose-lowering drugs on risk of acute kidney injury. Clin J Am Soc Nephrol 16(1):70–78
Rampersad C et al (2020) Acute kidney injury events in patients with type 2 diabetes using SGLT2 inhibitors versus other glucose-lowering drugs: a retrospective cohort study. Am J Kidney Dis 76(4):471 e1-479 e1
Iskander C et al (2020) Use of sodium-glucose cotransporter-2 inhibitors and risk of acute kidney injury in older adults with diabetes: a population-based cohort study. CMAJ 192(14):E351–E360
Nadkarni GN et al (2017) Acute kidney injury in patients on SGLT2 inhibitors: a propensity-matched analysis. Diabetes Care 40(11):1479–1485
Ueda P et al (2018) Sodium glucose cotransporter 2 inhibitors and risk of serious adverse events: nationwide register based cohort study. BMJ 363:k4365
Zhuo M et al (2021) SGLT2 inhibitors and the risk of acute kidney injury in older adults with type 2 diabetes. Am J Kidney Dis 79(6):858–867. https://doi.org/10.1053/j.ajkd.2021.09.015
Pasternak B et al (2020) Use of sodium-glucose co-transporter 2 inhibitors and risk of serious renal events: Scandinavian cohort study. BMJ 369:m1186
Carrero JJ, Elinder CG (2022) The Stockholm CREAtinine Measurements (SCREAM) project: fostering improvements in chronic kidney disease care. J Intern Med 291(3):254–268
Levey AS et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150(9):604–612
Kidney Disease Improving Global Outcomes (KDIGO) 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. 2012. https://kdigo.org/guidelines/ckd-evaluation-and-management/. Accessed Jan 2022
(2012) KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl 2:1–138.
McCaffrey DF et al (2013) A tutorial on propensity score estimation for multiple treatments using generalized boosted models. Stat Med 32(19):3388–3414
Austin PC, Small DS (2014) The use of bootstrapping when using propensity-score matching without replacement: a simulation study. Stat Med 33(24):4306–4319
Fu EL et al (2019) Merits and caveats of propensity scores to adjust for confounding. Nephrol Dial Transplant 34(10):1629–1635
Nespoux J, Vallon V (2018) SGLT2 inhibition and kidney protection. Clin Sci (Lond) 132(12):1329–1339
Vallon V et al (2013) Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus. Am J Physiol Ren Physiol 304(2):F156–F167
Cherney DZ et al (2014) Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation 129(5):587–597
O’Neill J et al (2015) Acute SGLT inhibition normalizes O2 tension in the renal cortex but causes hypoxia in the renal medulla in anaesthetized control and diabetic rats. Am J Physiol Ren Physiol 309(3):F227–F234
Dekkers CCJ et al (2018) Effects of the SGLT-2 inhibitor dapagliflozin on glomerular and tubular injury markers. Diabetes Obes Metab 20(8):1988–1993
Grams ME et al (2014) Performance and limitations of administrative data in the identification of AKI. Clin J Am Soc Nephrol 9(4):682–689
Kidney Disease Improving Global Outcomes Diabetes Work, G., KDIGO (2020) 2020 Clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int 98(4S):S1–S115
McDonagh TA et al (2021) 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 42(36):3599–3726
Forxiga (Dapagliflozin). Summary of European public assessment report (EPAR).
Invokana (Canagliflozin). Summary of European public assessment report (EPAR).
Jardiance (Empagliflozin). Summary of European public assessment report (EPAR).