Novel electroactive, silicate nanocomposites prepared to be used as actuators and artificial muscles

Sensors and Actuators A: Physical - Tập 105 - Trang 83-90 - 2003
J.D. Nam1, H.R. Choi2, Y.S. Tak3, K.J. Kim4
1School of Chemical and Polymer Engineering, Intelligent Microsystems Research Center, Kyonggi-do 440-746, South Korea
2School of Mechanical Engineering, Sung Kyun Kwan University, Suwon, Kyonggi-do 440-746, South Korea
3Department of Chemical Engineering, Inha University, Inchon 402-751, South Korea
4Mechanical Engineering Department and Nevada Ventures Nanoscience Program, Active Materials and Processing Laboratory (AMPL), University of Nevada, Reno, NV 89557, USA

Tài liệu tham khảo

Alexandre, 2000, Polymer-layered silicate nanocomposites: preparation, Mater. Sci. Eng., 28, 1, 10.1016/S0927-796X(00)00012-7 Mark, 1996, Ceramic reinforced polymers and polymer-modified ceramics, Polym. Eng. Sci., 36, 2905, 10.1002/pen.10692 Garcés, 2000, Polymer nanocomposites for automobile applications, Adv. Mater., 12, 1835, 10.1002/1521-4095(200012)12:23<1835::AID-ADMA1835>3.0.CO;2-T K. Shin, Y. Zhang, H. White, M.H. Rafailovich, J. Sokolov, D. Peiffer, Organoclay nanoplatelets at the air/water interface, KK8.4.1, in: A. Nakatani, R.P. Hjelm, M. Gerspacher, R. Krishnamoorti (Eds.), Filled and Nanocomposite Polymer Materials, vol. 661, Materials Research Society, Warrendale, PA, 2000. Biercuk, 2002, Carbon nanotube composites for thermal management, Appl. Phys. Lett., 80, 2767, 10.1063/1.1469696 B.K.G. Teng, The Chemistry of Clay–Organic Reactions, Wiley, New York, 1974. K.J. Kim, J.D. Nam, Novel nanocomposite materials exhibiting ion exchange capabilities, US Provisional Patent (2001). Moor, 1992, Barriers to flow in semicrystalline ionomers. A procedure for preparing melt-processes perfluorosulfonate ionomer films and membranes, J. Membr. Sci., 75, 7, 10.1016/0376-7388(92)80002-2 W. Grot, F. Chadds, European Patent 0,066,369 (1982). Gebel, 1987, Structure and related properties of solution-cast perfluosulfonate ionomer films, Macromolecules, 20, 1425, 10.1021/ma00172a049 T.D. Gierke, G.E. Munn, F.C. Wilson, Morphology of perfluorosulfonated membrane products: wise-angle and small-angle X-ray studies, in: Perfluorinated Ionomer Membranes, ACS Series 180, ACS, Washington DC, 1982. Abe, 1998, Effect on bending behavior of counter cation species in perfluorinated sulfonate membrane-platinum composite, Polym. Adv. Technol., 9, 520, 10.1002/(SICI)1099-1581(199808)9:8<520::AID-PAT791>3.0.CO;2-G Asaka, 1995, Bending of polyelectrolyte membrane-platinum composites by electric stimuli. I. Response characteristics to various waveforms, Polym. J., 27, 436, 10.1295/polymj.27.436 Shahinpoor, 1998, Smart Mater. Struct., 7, 15, 10.1088/0964-1726/7/6/001 Shahinpoor, 2003, Ionic polymer–metal composites as multifunctional materials, Polym. Compos., 24, 24, 10.1002/pc.10002 Shahinpoor, 2000, The effect of surface-electrode resistance on the performance of ionic polymer–metal composite (IPMC) artificial muscles, Smart Mater. Struct., 9, 642, 10.1088/0964-1726/9/4/318 Shahinpoor, 2001, Ionic polymer–metal composites. I. Fundamentals, Smart Mater. Struct.-Int. J., 10, 819, 10.1088/0964-1726/10/4/327 Shahinpoor, 2002, A novel physically-loaded and interlocked electrode developed for ionic polymer–metal composites (IPMCs), Sens. Actuators A Physical, 96, 125, 10.1016/S0924-4247(01)00777-4 K.J. Kim, M. Shahinpoor, Ionic polymer–metal composites. II. Manufacturing techniques, 12 (2003) 65–79. K.J. Kim, M. Shahinpoor, Applications of polyelectrolytes, in: S. Tripathy, J. Kumar, H.S. Nalwa (Eds.), Ionic Polymeric Sensors, Actuators, and Artificial Muscles, Review Chapter in Handbook of Polyelectrolytes, vol. 3, American Scientific Press (ASP), 2002, pp. 1–22 (Chapter 1). Kim, 2002, Development of three dimensional ionic polymer–metal composites as artificial muscles, Polymer, 43, 797, 10.1016/S0032-3861(01)00648-6 De Gennes, 2000, Mechanoelectric effects in ionic gels, Europhys. Lett., 50, 513, 10.1209/epl/i2000-00299-3 S. Namat-Nasser, C. Thomas, Ionomeric polymer–metal composites, in: Y. Bar-Cohen (Ed.), Electroactive Polymer (EAP) Actuators as Artificial Muscles-Reality, Potential, and Challenges, SPIE—The International Society for Optical Engineering, 2001. Mallavarpu, 2001, Feedback control of the bending response of ionic polymer–metal composite actuators, Proceedings of the SPIE-Smart Struct. Mater., 4329, 301 S. Tadokoro, T. Takamori, K. Oguro, Modeling IPMC for design of actuation mechanisms, in: Y. Bar-Cohen (Ed.), Electroactive Polymer Actuators as Artificial Muscles, SPIE, Washington, 2001 (Chapter 13). K. Bhattacharya, J. Li, Y. Xiao, Electromechanical models for optimal design and effective behavior of electroactive polymers, in: Y. Bar-Cohen (Ed.), Electroactive Polymer Actuators as Artificial Muscles, SPIE, Washington, 2001 (Chapter 12). T.G. Noh, Y. Tak, J.D. Nam, J.W. Jeon, H.M. Kim, H.R. Choi, S. Bae, Development of large-surface nafion-metal composite actuator and its electrochemical characterization, in: Proceedings of the SPIE 7th International Symposium on Smart Structures and Materials, vol. 4329, 2001, pp. 458–465. Sadeghipour, 1992, Development of a novel electrochemically active membranes and smart material based vibration sensor/damper, Smart Mater. Struct., 1, 172, 10.1088/0964-1726/1/2/012