Novel application of pH-sensitive firefly luciferases as dual reporter genes for simultaneous ratiometric analysis of intracellular pH and gene expression/location
Tóm tắt
Từ khóa
Tài liệu tham khảo
A. Roda, L. Mezzanotte, R. Aldini, E. Michelini and L. Cevenini, A new gastric-emptying mouse model based on in vivo non-invasive bioluminescence imaging, Neurogastroenterol. Motil., 2010, 22, 1117–1288.
V. R. Viviani and Y. Ohmiya, Beetle Luciferases: Colorful lights on biological processes and diseases, Photoprot. Bioanal., 2006, 49–63.
E. Michelini, L. Cevenini, L. Mezzanotte and A. Roda, in Bioluminescence: methods and protocols, ed. P. B. Rich and C. Douillet, 2009, pp. 1-13.
E. Michelini, L. Cevenini, M. M. Calabretta, S. Spinozzi, C. Camborata and A. Roda, Field-deployable whole-cell bioluminescent biosensors: so near and yet so far, Anal. Bioanal. Chem., 2013, 405, 6155–6163.
D. Abd-El-Halleem, S. Ripp, C. Scott and G. S. Sayler, A luxCDABE-based bioluminescent bioreporter for the detection of phenol, J. Ind. Microbiol. Biotechnol., 2002b, 29, 233–237.
D. Abd-El-Halleem, S. Zaki, A. Abulhamd, H. Elbery, G. Abu-Elreesh, Acinetobacter bioreporter assessing heavy metals toxicity, J. Basic Microbiol., 2006, 46, 339–347.
E. Eltzov and R. S. Marks, Whole-cell aquatic biosensors, Anal. Bioanal. Chem., 2011, 400, 895–913.
M. Mirasoli, J. S. Feliciano-Cardona, E. Michelini, A. Roda and S. Daunert, in Bioluminescence and Chemiluminescence: progress & current applications, ed. P. E. Stanley and L. J. Kricka, 2002, pp. 331-334.
S. Tauriainen, M. Karp, W. Chang and M. Virta, Recombinant luminescent bacteria for measuring bioavailablearsenite and antimonite, Appl. Environ. Microbiol., 1997, 63, 4456–4461.
S. Tauriainen, M. Karp, W. Chang and M. Virta, Luminescent bacterial sensor for cadmium and lead, Biosens. Bioelectron., 1998, 13, 931–938.
M. L. Änkö, J. Kurittu and M. Karp, An Escherichia coli biosensor strain for amplified and high throughput detection of antimicrobial agents, J. Biomol. Screen., 2002, 7, 119–125.
M. Imani, S. Hosseinkhani, S. Ahmadian and M. Nazari, Design and introduction of a disulfide bridge in firefly luciferase: increase of thermostability and decrease of pH sensitivity, Photochem. Photobiol. Sci., 2010, 9, 1167–1177.
A. Roda, L. Ceveninia, E. Michelini and B. R. Branchini, A portable bioluminescence engineered cell-based biosensor for on-site applications, Biosens. Bioelectron., 2011, 26, 3647–3653.
S. J. Valtonen, J. S. Kurittu and M. T. Karp, A luminescent Escherichia coli biosensor for the high throughput detection of beta-lactams, J. Biomol. Screen., 2002, 7, 127–134.
P. Billard, M. S. DuBow, Bioluminescence-based assays for detection and characterization of bacteria and chemicals in clinical laboratories, Clin. Biochem., 1998, 31, 1–14.
G. A. Umbuzeiro and P. F. Rodrigues, O teste de toxicidade com bactérias luminescentes e o controle da poluição das águas, Mundo Saúde, 2004, 28, 444–449.
A. M. Chaudri, B. P. Knight, V. L. Barbosa-Jefferson, S. Preston, G. I. Paton, K. Killham, N. Coad, F. A. Nicholson, B. J. Chambers, P. McGrath, Determination of acute Zn toxicity in pore water from soils previously treated with sewage sludge using bioluminescence assays, Environ. Sci. Technol., 1999, 33, 1880–1885.
D. S. Holmes, S. K. Dubey and S. Gangolli, Development of biosensors for the detection of mercury and copper ions, Environm. Geochem. Health, 1994, 16, 229–233.
O. Selifonova, R. Burlage and T. Barkay, Bioluminescent sensors for detection of bioavailable Hg(II) in the environment, Appl. Environ. Microbiol., 1993, 59, 3083–3090.
T. A. Krulwich, G. Sachs and E. Padan, Molecular aspects of bacterial pH sensing and homeostasis, Nature, 2011, 9, 330–343.
G. P. Amarante-Mendes, Apoptose: programa molecular de morte celular, Einstein, 2003, 1, 15–18.
R. Bizzarri, C. Arcangeli, D. Arosio, F. Ricci, P. Faraci, F. Cardarelli and F. Beltram, Development of a novel GFP-based ratiometric excitation and emission pH indicator for intracellular studies, Biophys. J., 2006, 90, 3300–3314.
P. Breeuwer, J. Drocourt, F. M. Rombouts and T. Abee, A novel method for continuous determination of the intracellular pH in bacteria with the internally conjugated fluorescent probe 5 (and 6-)-carboxyfluorescein succinimidyl ester, Appl. Environ. Microbiol., 1996, 62, 178–183.
J. Srivastava, D. L. Barber and M. P. Jacobson, Intracellular pH sensors: design principles and functional significance, Physiology, 2007, 22, 30–39.
J. W. A. van Beilen and S. Brul, Compartment-specific pH monitoringin Bacillus subtilis using fluorescent sensor proteins: a tool to analyze the antibacterial effect of weak organic acids, Frontiers Microbiol., 2013, 4, 1–11.
M. J. Mahon, pHluorin2: an enhanced, ratiometric, pH-sensitive green florescent protein, Adv. Biosci. Biotechnol., 2011, 2, 132–137.
M. Bencina, Illumination of the spatial order of intracellular pH by genetically encoded pH-sensitive sensors, Sensors, 2013, 13, 16736–16758.
H. H. Seliger, W. D. McElroy, The colors of firefly bioluminescence: enzyme configuration and species specificity, Proc. Natl. Acad. Sci. U. S. A., 1964, 52, 75–81.
V. R. Viviani, V. R. And and E. J. H. Bechara, Bioluminescence of Brazilian fireflies (Coleoptera: Lampyridae): spectral distribution and pH-effect on luciferase-elicited colors. Comparison with elaterid and phengodid luciferases, Photochem. Photobiol. Sci., 1995, 62, 490–495.
V. R. Viviani, A. J. Silva-Neto, F. G. C. Arnoldi, J. A. R. G. Barbosa and Y. Ohmiya, The influence of the loop between residues 223-235 in beetle luciferase bioluminescence spectra: a solvent gate for the active site of pH-sensitive luciferases, Photochem. Photobiol. Sci., 2008, 84, 138–144.
V. R. Viviani, T. L. Oehlmeyer, F. G. C. Arnoldi, M. R. Brochetto-Braga, A new firefly luciferase with bimodal spectrum: identification of structural determinants in spectral pH-sensitivity firefly luciferases, Photochem. Photobiol. Sci., 2005, 81, 843–848.
V. R. Viviani, F. G. C. Arnoldi, A. J. S. Neto, T. L. Oehlmeyer, E. J. H. Bechara and Y. Ohmiya, The structural origin and biological function of pH-sensitivity in firefly luciferases, Photochem. Photobiol. Sci., 2008, 7, 159–169.
V. Viviani, Placa com luciferases imobilizadas em gel para análise de ATP e contaminação microbiológica, Brazilian patent PI0604475-1 A2, 2006.
A. J. Silva-Neto, V. Scorsato, F. G. C. Arnoldi and V. R. Viviani, Pyrearinus termitilluminans larval click beetle luciferase: active site properties, structure and function relationships and comparison with other beetle luciferases, Photochem. Photobiol. Sci., 2009, 8, 1748–1754.
V. R. Viviani, F. G. C. Arnoldi, M. R. Brochetto-Braga and Y. Ohmiya, Cloning and characterization of the cDNA for the brazilian Cratomorphus distinctus larval firefly luciferase: similarities with European Lampyris noctiluca and asiatic Pyrocoelia luciferases, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 2004, 139, 151–156.
V. R. Viviani, D. T. Amaral, R. A. Prado and F. G. C. Arnoldi, A new blue-shifted luciferase from the brazilian Amydetes fanestratus (Coleoptera: Lampyridae) firefly: molecular evolution and structural/functional properties, Photochem. Photobiol., 2011, 10, 1879–1886.
Y. Lam, A. K. L. C. Lin and C. Ho, A phosphorus-31 nuclear magnetic resonance investigation of intracellular environment in human normal and sickle cell blood, Blood, 1979, 54, 196–209.
D. L. Nelson and M. M. Cox, Princípios de Bioquímica, Sarvier, São Paulo, 3rd edn, 2006.
G. V. M. Gabriel, P. S. Lopes and V. R. Viviani, Suitability of Macrolampis firefly and Pyrearinus click beetle luciferases for bacterial light off toxicity biosensor, Anal. Biochem., 2014, 445, 72–78.
M. Hattori, S. Haga, H. Takakura, M. Ozaki and T. Ozawa, Sustained accurate recording of intracellular acidification in living tissues with a photo-controllable bioluminescent protein, Proc. Natl. Acad. Sci. U. S. A., 2013, 110, 9332–9337.