Các phosphor KLaSr3(PO4)3F:Eu2+ mới: tổng hợp, cấu trúc và tính chất phát sáng

Journal of Materials Research - Tập 31 - Trang 3489-3497 - 2016
Qingfeng Guo1, Chenglong Zhao2, Libing Liao1, Stefan Lis3, Haikun Liu1, Lefu Mei1
1China University of Geosciences, Beijing, China
2Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
3Faculty of Chemistry, Department of Rare Earths, Adam Mickiewicz University, Poznań, Poland

Tóm tắt

Một loạt các phosphor KLaSr3−x(PO4)3F: x Eu2+ mới đã được tổng hợp lần đầu tiên. Cấu trúc tinh thể, tính chất phát quang, hiện tượng ức chế nồng độ, phân tích độ suy tàn, và các tính chất phát quang phụ thuộc vào nhiệt độ đã được nghiên cứu chi tiết. Các thông số ô đơn vị của KLaSr3(PO4)3F được ước tính là a = 9.8997 Å, c = 7.4075 Å, và V = 628.7 Å3. Quang phổ kích thích phát quang của KLaSr3(PO4)3F:Eu2+ cho thấy một dải rộng từ 225 nm đến 450 nm với cực đại khoảng 320 nm. Các phosphor KLaSr3−x(PO4)3F: x Eu2+ thể hiện một dải phát sáng rộng từ 425 đến 550 nm. Các phosphor KLaSr3(PO4)3F:Eu2+ cho thấy độ ổn định nhiệt tốt lên đến 423 K. KLaSr3(PO4)3F:Eu2+ đã được chế tạo với các phosphor xanh thương mại (Ba,Sr)SiO4:Eu2+ và đỏ CaAlSiN3:Eu2+ để tạo ra diode phát sáng trắng. Tất cả các kết quả cho thấy KLaSr3(PO4)3F:Eu2+ là những phosphor xanh đầy hứa hẹn cho ứng dụng trong diode phát sáng trắng sử dụng ánh sáng cực tím.

Từ khóa

#phosphor #cấu trúc tinh thể #tính chất phát quang #phát sáng trắng #diode phát sáng

Tài liệu tham khảo

X.Y. Mi, J.C. Sun, P. Zhou, H.Y. Zhou, D. Song, K. Li, M.M. Shang, and J. Lin: Tunable luminescence and energy transfer properties in Ca8MgLu(PO4)7:Ce3+,Tb3+,Mn2+ phosphors. J. Mater. Chem. C 3, 4471 (2015). C.F. Guo, H. Jing, and T. Li: Green-emitting phosphor Na2Gd2B2O7:Ce3+,Tb3+ for near-UV LEDs. RSC Adv. 2, 2119 (2012). M.K. Kang and H.R. Jeong: Synthesis of Y3Al5O12:Ce3+ colloidal nanocrystals by pulsed laser ablation and their luminescent properties. J. Alloys Compd. 576, 195 (2013). D.D. Jia, Y. Wang, X. Guo, K. Li, Y.K. Zou, and W.Y. Jia: Synthesis and characterization of YAG:Ce3+ LED nanophosphors. J. Electrochem. Soc. 154, 1 (2007). S.Y. Xin and G. Zhu: Enhanced luminescence and abnormal thermal quenching behaviour investigation of BaHfSi3O9:Eu2+ blue phosphor co-doped with La3+–Sc3+ ion pairs. RSC Adv. 6, 41755 (2016). H.K. Liu, L.B. Liao, M.S. Molokeev, Q.F. Guo, Y.Y. Zhang, and L.F. Mei: A novel single-phase white light emitting phosphor Ca9La(PO4)5(SiO4)F2:Dy3+: Synthesis, crystal structure and luminescence properties. RSC Adv. 6, 24577 (2016). Q.F. Guo, L.B. Liao, M.S. Molokeev, L.F. Mei, and H.K. Liu: Color tunable emission and energy transfer of Ce3+ and Tb3+ co-doped novel La6Sr4(SiO4)6F2 phosphors with apatite structure. Mater. Res. Bull. 72, 245 (2015). K. Li, D.L. Geng, M.M. Shang, Y. Zhang, H.Z. Lian, and J. Lin: Color-tunable luminescence and energy transfer properties of Ca9Mg(PO4)6F2:Eu2+,Mn2+ phosphors for UV-LEDs. J. Phys. Chem. C 118, 11026 (2014). Y.M. Feng, J.P. Huang, L.L. Liu, J. Liu, and X.B. Yu: Enhancement of white-light-emission from single-phase Sr5(PO4)3F:Eu2+,Mn2+ phosphors for near-UV white LEDs. Dalton Trans. 44, 15006 (2015). H.K. Liu, L.B. Liao, J. Chen, Q.F. Guo, Y.Y. Zhang, and L.F. Mei: Tunable luminescence properties and energy transfer of Ba3NaLa(PO4)3F:Tb3+,Sm3+ phosphors with apatite structure. J. Lumin. 169, 739 (2016). S.S. Hu and W.J. Tang: Single-phased white-light-emitting Sr3NaLa(PO4)3F:Eu2+,Mn2+ phosphor via energy transfer. J. Lumin. 145, 100 (2014). Q.F. Guo, L.B. Liao, L.F. Mei, and H.K. Liu: Color-tunable photoluminescence and energy transfer properties of single-phase Ba10(PO4)6O:Eu2+,Mn2+ phosphors. J. Solid State Chem. 232, 102 (2015). M.B. Xie and R.K. Pan: Photoluminescence and Ce3+ → Tb3+ energy transfer in fluoro-apatite host Ca6La2Na2(PO4)6F2. Opt. Mater. 35, 1162 (2013). Y. Li, W.J. Liu, X.C. Wang, G. Zhu, C. Wang, and Y.H. Wang: A double substitution induced Ca(Mg0.8Al0.2)–(Si1.8Al0.2)O6:Eu2+ phosphor for w -LEDs: Synthesis, structure, and luminescence properties. Dalton Trans. 44, 13196 (2015). L.K. Bharat, J.Y. Park, and J.S. Yu: Hydrothermal synthesis, structures and luminescent properties of nanocrystaline Ca8Gd2(PO4)6O2:Eu2+,Eu3+ phosphors. Chem. Eng. J. 240, 179 (2014). A.C. Larson and R.B. Von Dreele: General Structure Analysis System (GSAS) (Los Alamos National Laboratory Report LAUR, Los Alamos, 2000); pp. 86–748. R.D. Shannon: Revised effective ionic radii, and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751 (1976). L.H. Liu, L. Wang, C.N. Zhang, Y.J. Cho, B. Dierre, N. Hirosaki, T. Sekiguchi, and R.J. Xie: Strong energy-transfer-induced enhancement of luminescence efficiency of Eu2+- and Mn2+ -Co doped gamma-AlON for nar-UV-LED-pumped solid state lighting. Inorg. Chem. 54, 5556 (2015). P.P. Dai, S.P. Lee, T.S. Chan, C.H. Huang, Y.W. Chiang, and T.M. Chen: Sr3Ce(PO4)3:Eu2+, a broadband yellow-emitting phosphor for near ultraviolet-pumped white light-emitting devices. J. Mater. Chem. C 4, 1170 (2016). W.Z. Lv, M.M. Jiao, Q. Zhao, B.Q. Shao, W. Lu, and H.P. You: Ba1.3Ca0.7SiO4:Eu2+,Mn2+: A promising single-phase, color-tunable phosphor for near-ultraviolet white-light-emitting diodes. Inorg. Chem. 53, 11007 (2014). R.S. Rani and A. Lakshmanan: The role of anion and cation vacancies in the thermoluminescence and photoluminescence processes of BaSO4:Eu2+. J. Lumin. 174, 63 (2016). G.Z. Chen, L.J. Yin, J.T. Dong, Y.Y. Feng, Y. Gao, W.D. He, Y. Jia, and H.T. Hintzen: Synthesis, crystal structure, and luminescence properties of Y4Si2O7N2:Eu2+ oxynitride phosphors. J. Am. Chem. Soc. 99, 183 (2016). C.H. Huang, W.R. Liu, and T.M. Chen: Single-phased white-light phosphors Ca9Gd(PO4)7:Eu2+,Mn2+ under near-ultraviolet excitation. J. Phys. Chem. C 114, 18698 (2010). L.G. Van Uiter: An empirical relation fitting the position in energy of the lower d -band edge for Eu2+ or Ce3+ in various compounds. J. Lumin. 29, 1 (1984). P.D. Rack and P.H. Holloway: The structure, device physics, and material properties of thin film electroluminescent displays. Mater. Sci. Eng., R 21, 171 (1998). M. Zeuner, P.J. Schmidt, and W. Schnick: One-pot synthesis of single-source precursors for nanocrystalline LED phosphors M2Si5N8:Eu2+ (M = Sr, Ba). Chem. Mater. 21, 2467 (2009). G. Blasse: Energy transfer between inequivalent Eu2+ ions. J. Solid State Chem. 62, 207 (1986). D.L. Dexter: A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836 (1953). J.Y. Zhong, W.D. Zhuang, X.R. Xing, R.H. Liu, Y.F. Li, Y.H. Liu, and Y.S. Hu: Synthesis, crystal structures, and photoluminescence properties of Ce3+-doped Ca2LaZr2Ga3O12: New garnet green-emitting phosphors for white LEDs. J. Phys. Chem. C 119, 5562 (2015). J.H. Zhang, Q.J. Cheng, S.Q. Wu, Z.Q. Guo, Y.X. Zhuang, Y.J. Lu, Y. Li, and C. Chen: An efficient blue-emitting Sr5(PO4)3Cl:Eu2+ phosphor for application in near-UV white light-emitting diodes. J. Mater. Chem. C 3, 11219 (2015). J. Zheng, S. Wu, G. Chen, S. Dang, Y. Zhuang, Z. Guo, Y. Lu, Q. Cheng, and C. Chen: Blue-emitting Ca5(PO4)3Cl:Eu2+ phosphor for near-UV pumped light emitting diodes: Electronic structures, luminescence properties and LED fabrications. J. Alloys Compd. 663, 332 (2016).