Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Nền tảng kiểm tra mới và di động cho việc phát hiện nhanh chóng và nhạy cảm thuốc trừ sâu procymidone
Tóm tắt
Một nền tảng phát hiện mới và di động cho procymidone (PRM) đã được phát triển bằng cách kết hợp xử lý mẫu đơn giản, các dải thử nghiệm dòng ngang dựa trên hạt nano vàng nhánh đa (LFTS-MBGNP) và điện thoại thông minh. Dựa trên diện tích bề mặt lớn của các hạt nano vàng nhánh đa (MBGNP), việc phát hiện nhanh chóng PRM được thực hiện qua việc quan sát bằng mắt thường. Bằng cách sử dụng điện thoại thông minh như một thiết bị phân tích tín hiệu di động, việc phát hiện định lượng siêu nhạy của PRM trong rượu vang đỏ đã được thực hiện với giới hạn phát hiện (LOD) là 1.60 ng/mL, thấp hơn 3000 lần so với giới hạn của Hoa Kỳ (5 ppm). Hơn nữa, việc phát hiện nhanh bốn loại trái cây và rau củ đã được thực hiện trong vòng 10 phút, với LOD lần lượt là 4.34 ng/g, 6.93 ng/g, 8.99 ng/g và 5.03 ng/g, có khả năng đáp ứng giới hạn PRM của Liên minh Châu Âu (10 ng/g). Tích hợp phương pháp xử lý QuEChERS đã được tối ưu hóa, nền tảng phát triển đã thực hiện việc phát hiện thuốc trừ sâu PRM trong thực phẩm và rượu vang đỏ một cách đơn giản và nhạy cảm trong vòng 45 phút. Nền tảng này cung cấp một công cụ hữu ích và ý tưởng mới cho việc sàng lọc và phát hiện nhanh chóng dư lượng thuốc trừ sâu trong thực phẩm.
Từ khóa
#procymidone #phát hiện nhanh #thuốc trừ sâu #rượu vang đỏ #dải thử nghiệm dòng ngang #hạt nano vàngTài liệu tham khảo
Miorini TJJ, Raetano CG, Negrisoli MM, Perez-Hernandez O (2021) Determination of the protection period of fungicides used for control of SCLEROTINIA stem rot in soybean through bioassay and chromatography. Eur J Plant Pathol 159(4):877–889. https://doi.org/10.1007/s10658-021-02212-z
Wu Y, Zuo Z, Chen M, Zhou Y, Yang Q, Zhuang S, Wang C (2018) The developmental effects of low-level procymidone towards zebrafish embryos and involved mechanism. Chemosphere 193 https://doi.org/10.1016/j.chemosphere.2017.11.105
Qi L, Xiaofang S, Lianshan L, Da L, Minghua W, Haiyan S (2021) Toxicity effects of procymidone, iprodione and their metabolite of 3,5-dichloroaniline to zebrafish. Chemosphere 272 https://doi.org/10.1016/j.chemosphere.2021.129577
Guofu Q, Yan C, Fengrui H, Bixia Y, Keting Z, Nemin S, Yongbo L (2021) Risk assessment of fungicide pesticide residues in vegetables and fruits in the mid-western region of China. J Food Compos Anal 95:103663–103663. https://doi.org/10.1016/j.jfca.2020.103663
Anyi W, Qianxuan Y, Huahui L, Ze L, Yao Z, Ting L, Yuanxiang J (2021) Developmental toxicity of procymidone to larval zebrafish based on physiological and transcriptomic analysis. Comp Biochem Physiol Part C: Toxicology & Pharmacology, 248 https://doi.org/10.1016/j.cbpc.2021.109081
Sreedhar NY, Babu TR, Samatha K, Sujatha D, Thriveni T (2002) Differential pulse polarographic determination of procymidone in formulations and wine. J AOAC Int 85(3):731–735
Adnan M, Hamada MS, Hahn M, Li G-Q, Luo C-X (2019) Fungicide resistance of Botrytis cinerea from strawberry to procymidone and zoxamide in Hubei, China. Phytopathol Res 1(1) https://doi.org/10.1186/s42483-019-0024-8
Fulgencio ACDC, Saczk AA, Oliveira MFD, Okumura LL (2014) New voltammetry-based analytical method for indirect determination of procymidone in Brazilian apples. Food Anal Methods 7(1):31–38. https://doi.org/10.1007/s12161-013-9593-9
Bingran W, Tiancheng L, Lingling W, Wenchan C, Longbing H, Lei D, Kai W (2021) Biochemical and molecular characterization of Alternaria alternata isolates highly resistant to procymidone from broccoli and cabbage. Phytopathol Res 3(1) https://doi.org/10.1186/s42483-021-00092-z
Shanshan D, Yanhua W, Hao X, Xinquan W, Guiling Y, Chen C, Yongzhong Q (2021) Comparison the dissipation behaviors and exposure risk of carbendazim and procymidone in greenhouse strawberries under different application method: individual and joint applications. Food Chem 354:129502–129502. https://doi.org/10.1016/j.foodchem.2021.129502
Qiu-Sheng X, Hui-Lin H, Lv Z, Ai-Hong W (2017) Determination of procymidone and iprodione residues in tomato by high performance liquid chromatography. J Food Safety Qual 8(2) 486–490. <Go to ISI>://FSTA:2017–07-Jj6352
Xue-yan H, Tao P, Hui C, Wen-wen W (2018) Determination of ten pesticide residues in tea by liquid chromatography-tandem mass spectrometry and gas chromatography-tandem mass spectrometry. Sci Technol Food Ind (No. 17), 240–252
Kapukiran F, Firat M, Chormey DS, Bakirdere S, Ozdogan N (2019) Accurate and sensitive determination method for procymidone and chlorflurenol in municipal wastewater, medical wastewater and irrigation canal water by GC-MS after vortex assisted switchable solvent liquid phase microextraction. Bull Environ Contam Toxicol 102(6):848–853. https://doi.org/10.1007/s00128-019-02618-w
Siyuan B, Baoling L, Zhiqiang Z, Tao C, Hui G, Hong J (2019) Determination of 7 commonly used pesticide residues in citrus fruits by QuEChERS-GC-ECD. Food Ind (No. 12) 305–308
Wang J, Cao F, He S, Xia Y, Liu X, Jiang W, Chen W (2018) FRET on lateral flow test strip to enhance sensitivity for detecting cancer biomarker. Talanta 176:444–449. https://doi.org/10.1016/j.talanta.2017.07.096
Xiao M, Fu Q, Shen H, Chen Y, Xiao W, Yan D, Tang Y (2018) A turn-on competitive immunochromatographic strips integrated with quantum dots and gold nano-stars for cadmium ion detection. Talanta 178:644–649. https://doi.org/10.1016/j.talanta.2017.10.002
Neng J, Liao C, Wang Y, Wang Y, Yang K (2022) Rapid and sensitive detection of pentachloronitrobenzene by surface-enhanced Raman spectroscopy combined with molecularly imprinted polymers. Biosensors-Basel 12(2)https://doi.org/10.3390/bios12020052
Chapman R, Lin Y, Burnapp M, Bentham A, Hillier D, Zabron A, Stevens MM (2015) Multivalent nanoparticle networks enable point-of-care detection of human phospholipase-A2 in serum. ACS Nano 9(3):2565–2573. https://doi.org/10.1021/nn5057595
Heleyel M, Elhami S (2019) Sensitive, simple and rapid colorimetric detection of malachite green in water, salmon and canned tuna samples based on gold nanoparticles. J Sci Food Agric 99(4):1919–1925. https://doi.org/10.1002/jsfa.9387
Zhang W, Duan H, Chen R, Ma T, Zeng L, Leng Y, Xiong Y (2019) Effect of different-sized gold nanoflowers on the detection performance of immunochromatographic assay for human chorionic gonadotropin detection. Talanta 194:604–610. https://doi.org/10.1016/j.talanta.2018.10.080
Yang F, Lin D, Pan L, Zhu J, Shen J, Yang L, Jiang C (2021) Portable smartphone platform based on a single dual-emissive ratiometric fluorescent probe for visual detection of isopropanol in exhaled breath. Anal Chem 93(43):14506–14513. https://doi.org/10.1021/acs.analchem.1c03280
Zhang Q, Zhang Z, Xu S, Da L, Lin D, Jiang C (2022) Enzyme-free and rapid visual quantitative detection for pesticide residues utilizing portable smartphone integrated paper sensor. J Hazard Mater 436 https://doi.org/10.1016/j.jhazmat.2022.129320
Chu S, Wang H, Ling X, Yu S, Yang L, Jiang C (2020) A portable smartphone platform using a ratiometric fluorescent paper strip for visual quantitative sensing. ACS Appl Mater Interfaces 12(11):12962–12971. https://doi.org/10.1021/acsami.9b20458
Lu YK, Xu D, Liu WY, Xie J, Lu Y (2022) A rapid tricolour immunochromatographic assay for simultaneous detection of tricaine and malachite green. Biosensors (Basel),12(7) https://doi.org/10.3390/bios12070456
Lehotay SJ, Mastovska K, Lightfield AR (2005) Use of buffering and other means to improve results of problematic pesticides in a fast and easy method for residue analysis of fruits and vegetables. J AOAC Int 88(2), 615–629 <Go to ISI>://WOS:000228000600032
Andrascikova M, Hrouzkova S (2013) A comparative study of three modifications of the QuEChERS method for determination of endocrine disrupting pesticide residues in lemon matrices by fast GC-MS. Anal Methods 5(6):1374–1384. https://doi.org/10.1039/C3AY26434C
Anastassiades M, Lehotay SJ, Stajnbaher D, Schenck FJ (2003) Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J AOAC Int 86(2):412–431. https://doi.org/10.1093/jaoac/86.2.412
Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV-Vis spectra. Anal Chem 79(11):4215–4221. https://doi.org/10.1021/ac0702084
Khoshbin Z, Moeenfard M, Abnous K, Taghdisi SM (2023) Nano-gold mediated aptasensor for colorimetric monitoring of acrylamide: smartphone readout strategy for on-site food control. Food Chem 399:133983–133983. https://doi.org/10.1016/j.foodchem.2022.133983
Lai Q, Sun X, Li L, Li D, Wang M, Shi H (2021) Toxicity effects of procymidone, iprodione and their metabolite of 3,5-dichloroaniline to zebrafish. Chemosphere 272 https://doi.org/10.1016/j.chemosphere.2021.129577
De Puig H, Tam JO, Yen C-W, Gehrke L, Hamad-Schifferli K (2015) Extinction coefficient of gold nanostars. J Phys Chem C 119(30):17408–17415. https://doi.org/10.1021/acs.jpcc.5b03624
Yongbo L, Guofu Q, Fengrui H, Keting Z, Bei Z, Ruixiao L, Guangfeng J (2022) Investigation and analysis of pesticide residues in edible fungi produced in the mid-western region of China. Food Control 136 https://doi.org/10.1016/j.foodcont.2022.108857
Li G, Guan F, Zhao S, Xu H, Sun J, Huang J, Guo Y (2023) Immediate, sensitive and specific time-resolved fluorescent immunoassay strips based on immune competition for the detection of procymidone in vegetables. Food Control 147 https://doi.org/10.1016/j.foodcont.2022.109569