Novel Therapies in Polycythemia Vera

Springer Science and Business Media LLC - Tập 15 - Trang 133-140 - 2020
Douglas Tremblay1, John Mascarenhas1
1Tisch Cancer Institute, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, USA

Tóm tắt

Polycythemia vera is a myeloproliferative neoplasm characterized by increased erythrocyte count, thrombotic potential, and transformation to myelofibrosis. Older patients and those who have a history of thrombosis require cytoreductive therapy, most commonly with hydroxyurea. Other currently available therapies include pegylated interferon alfa-2a and the JAK1/2 inhibitor ruxolitinib. However, there are limitations to these agents, including potential detrimental adverse effects. In this review, we will describe current therapeutic options for the treatment of PV and then detail new agents with available clinical trial data. A number of novel investigational therapies including MDM2 inhibitors, histone deacetylase inhibitors, and long-acting pegylated interferon alfa-2b are in various stages of clinical development with encouraging efficacy data. The therapeutic landscape for patients with PV is expanding. Novel agents are in development that not only reduce the thrombotic potential but also act directly on the malignant PV clone with the intention of significantly modifying disease progression.

Tài liệu tham khảo

Tefferi A, Rumi E, Finazzi G, Gisslinger H, Vannucchi AM, Rodeghiero F, et al. Survival and prognosis among 1545 patients with contemporary polycythemia vera: an international study. Leukemia. 2013;27(9):1874–81. https://doi.org/10.1038/leu.2013.163. Sekhar M, McVinnie K, Burroughs AK. Splanchnic vein thrombosis in myeloproliferative neoplasms. Br J Haematol. 2013;162(6):730–47. https://doi.org/10.1111/bjh.12461. Cerquozzi S, Tefferi A. Blast transformation and fibrotic progression in polycythemia vera and essential thrombocythemia: a literature review of incidence and risk factors. Blood Cancer J. 2015;5:e366. https://doi.org/10.1038/bcj.2015.95. Passamonti F, Rumi E, Pungolino E, Malabarba L, Bertazzoni P, Valentini M, et al. Life expectancy and prognostic factors for survival in patients with polycythemia vera and essential thrombocythemia. Am J Med. 2004;117(10):755–61. https://doi.org/10.1016/j.amjmed.2004.06.032. Barbui T, Tefferi A, Vannucchi AM, Passamonti F, Silver RT, Hoffman R, et al. Philadelphia chromosome-negative classical myeloproliferative neoplasms: revised management recommendations from European LeukemiaNet. Leukemia. 2018;32(5):1057–69. https://doi.org/10.1038/s41375-018-0077-1. Marchioli R, Finazzi G, Specchia G, Cacciola R, Cavazzina R, Cilloni D, et al. Cardiovascular events and intensity of treatment in polycythemia vera. N Engl J Med. 2013;368(1):22–33. https://doi.org/10.1056/NEJMoa1208500. Vannucchi AM, Kiladjian JJ, Griesshammer M, Masszi T, Durrant S, Passamonti F, et al. Ruxolitinib versus standard therapy for the treatment of polycythemia vera. N Engl J Med. 2015;372(5):426–35. https://doi.org/10.1056/NEJMoa1409002. Passamonti F, Griesshammer M, Palandri F, Egyed M, Benevolo G, Devos T, et al. Ruxolitinib for the treatment of inadequately controlled polycythaemia vera without splenomegaly (RESPONSE-2): a randomised, open-label, phase 3b study. Lancet Oncol. 2017;18(1):88–99. https://doi.org/10.1016/S1470-2045(16)30558-7. Fruchtman SM, Mack K, Kaplan ME, Peterson P, Berk PD, Wasserman LR. From efficacy to safety: a polycythemia vera study group report on hydroxyurea in patients with polycythemia vera. Semin Hematol. 1997;34(1):17–23. United States Food and Drug Administration. Hydroxyurea Prescribing Information. Updated March 2016. Bjorkholm M, Derolf AR, Hultcrantz M, Kristinsson SY, Ekstrand C, Goldin LR, et al. Treatment-related risk factors for transformation to acute myeloid leukemia and myelodysplastic syndromes in myeloproliferative neoplasms. J Clin Oncol. 2011;29(17):2410–5. https://doi.org/10.1200/JCO.2011.34.7542. Birgegard G, Folkvaljon F, Garmo H, Holmberg L, Besses C, Griesshammer M, et al. Leukemic transformation and second cancers in 3649 patients with high-risk essential thrombocythemia in the EXELS study. Leuk Res. 2018;74:105–9. https://doi.org/10.1016/j.leukres.2018.10.006. Barosi G, Mesa R, Finazzi G, Harrison C, Kiladjian JJ, Lengfelder E, et al. Revised response criteria for polycythemia vera and essential thrombocythemia: an ELN and IWG-MRT consensus project. Blood. 2013;121(23):4778–81. https://doi.org/10.1182/blood-2013-01-478891. Alvarez-Larran A, Pereira A, Cervantes F, Arellano-Rodrigo E, Hernandez-Boluda JC, Ferrer-Marin F, et al. Assessment and prognostic value of the European LeukemiaNet criteria for clinicohematologic response, resistance, and intolerance to hydroxyurea in polycythemia vera. Blood. 2012;119(6):1363–9. https://doi.org/10.1182/blood-2011-10-387787. Alvarez-Larran A, Martinez-Aviles L, Hernandez-Boluda JC, Ferrer-Marin F, Antelo ML, Burgaleta C, et al. Busulfan in patients with polycythemia vera or essential thrombocythemia refractory or intolerant to hydroxyurea. Ann Hematol. 2014;93(12):2037–43. https://doi.org/10.1007/s00277-014-2152-7. Finazzi G, Caruso V, Marchioli R, Capnist G, Chisesi T, Finelli C, et al. Acute leukemia in polycythemia vera: an analysis of 1638 patients enrolled in a prospective observational study. Blood. 2005;105(7):2664–70. https://doi.org/10.1182/blood-2004-09-3426. Tefferi A, Barbui T. Polycythemia vera and essential thrombocythemia: 2019 update on diagnosis, risk-stratification and management. Am J Hematol. 2019;94(1):133–43. https://doi.org/10.1002/ajh.25303. Silver RT. Recombinant interferon-alpha for treatment of polycythaemia vera. Lancet. 1988;2(8607):403. https://doi.org/10.1016/s0140-6736(88)92881-4. Turlure P, Cambier N, Roussel M, Bellucci P, Zini J, Rain J et al. editors. Complete hematological, molecular and histological remissions without cytoreductive treatment lasting after pegylated-interferon α-2a (peg-IFNα-2a) therapy in polycythemia vera (PV): long term results of a phase 2 trial. American Society of Hematology Annual MNeeting; 2011; San Diego, CA. Kiladjian JJ, Cassinat B, Chevret S, Turlure P, Cambier N, Roussel M, et al. Pegylated interferon-alfa-2a induces complete hematologic and molecular responses with low toxicity in polycythemia vera. Blood. 2008;112(8):3065–72. https://doi.org/10.1182/blood-2008-03-143537. Masarova L, Patel KP, Newberry KJ, Cortes J, Borthakur G, Konopleva M, et al. Pegylated interferon alfa-2a in patients with essential thrombocythaemia or polycythaemia vera: a post-hoc, median 83 month follow-up of an open-label, phase 2 trial. Lancet Haematol. 2017;4(4):e165–e75. https://doi.org/10.1016/S2352-3026(17)30030-3. Yacoub A, Mascarenhas J, Kosiorek H, Prchal JT, Berenzon D, Baer MR, et al. Pegylated interferon Alfa-2a for polycythemia vera or essential thrombocythemia resistant or intolerant to hydroxyurea. Blood. 2019. https://doi.org/10.1182/blood.2019000428. Mascarenhas J, Kosiorek HE, Prchal JT, Rambaldi A, Berenzon D, Yacoub A et al. Results of the myeloproliferative neoplasms-research consortium (MPN-RC) 112 randomized trial of pegylated interferon alfa-2a (PEG) versus hydroxyurea (HU) therapy for the treatment of high risk polycythemia vera (PV) and high risk essential thrombocythemia (ET). American Society of Hematology Annual Meeting; San Diego, CA 2018. p. Abstract 577. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434(7037):1144–8. https://doi.org/10.1038/nature03546. Verstovsek S, Vannucchi AM, Griesshammer M, Masszi T, Durrant S, Passamonti F, et al. Ruxolitinib versus best available therapy in patients with polycythemia vera: 80-week follow-up from the RESPONSE trial. Haematologica. 2016;101(7):821–9. https://doi.org/10.3324/haematol.2016.143644. Lussana F, Cattaneo M, Rambaldi A, Squizzato A. Ruxolitinib-associated infections: a systematic review and meta-analysis. Am J Hematol. 2018;93(3):339–47. https://doi.org/10.1002/ajh.24976. Heine A, Held SA, Daecke SN, Wallner S, Yajnanarayana SP, Kurts C, et al. The JAK-inhibitor ruxolitinib impairs dendritic cell function in vitro and in vivo. Blood. 2013;122(7):1192–202. https://doi.org/10.1182/blood-2013-03-484642. Tremblay D, King A, Li L, Moshier E, Coltoff A, Koshy A, et al. Risk factors for infections and secondary malignancies in patients with a myeloproliferative neoplasm treated with ruxolitinib: a dual-center, propensity score-matched analysis. Leukemia & Lymphoma. 2019:1–8. https://doi.org/10.1080/10428194.2019.1688323. Mesa R, Vannucchi AM, Yacoub A, Zachee P, Garg M, Lyons R, et al. The efficacy and safety of continued hydroxycarbamide therapy versus switching to ruxolitinib in patients with polycythaemia vera: a randomized, double-blind, double-dummy, symptom study (RELIEF). Br J Haematol. 2017;176(1):76–85. https://doi.org/10.1111/bjh.14382. • Sorensen AL, Mikkelsen SU, Knudsen TA, Bjorn ME, Andersen CL, Bjerrum OW, et al. Ruxolitinib and interferon-alpha2 combination therapy for patients with polycythemia vera or myelofibrosis: a phase II study. Haematologica. 2019. https://doi.org/10.3324/haematol.2019.235648Combiniation treatment with ruxolitinib and pegylated interferon alfa-2a with favorable safety and efficacy data. Lindemann RK, Gabrielli B, Johnstone RW. Histone-deacetylase inhibitors for the treatment of cancer. Cell Cycle. 2004;3(6):779–88. Guerini V, Barbui V, Spinelli O, Salvi A, Dellacasa C, Carobbio A, et al. The histone deacetylase inhibitor ITF2357 selectively targets cells bearing mutated JAK2(V617F). Leukemia. 2008;22(4):740–7. https://doi.org/10.1038/sj.leu.2405049. Rambaldi A, Dellacasa CM, Finazzi G, Carobbio A, Ferrari ML, Guglielmelli P, et al. A pilot study of the Histone-Deacetylase inhibitor givinostat in patients with JAK2V617F positive chronic myeloproliferative neoplasms. Br J Haematol. 2010;150(4):446–55. https://doi.org/10.1111/j.1365-2141.2010.08266.x. Finazzi G, Vannucchi AM, Martinelli V, Ruggeri M, Nobile F, Specchia G, et al. A phase II study of givinostat in combination with hydroxycarbamide in patients with polycythaemia vera unresponsive to hydroxycarbamide monotherapy. Br J Haematol. 2013;161(5):688–94. https://doi.org/10.1111/bjh.12332. Finazzi G, Iurlo A, Martino B, Carli G, Guarini A, Noble R et al. A long-term safety and efficacy study of givinostat in patients with polycythemia vera: the first 4 years of treatment. American Society of Hematology Annual Meeting; Atlanta, GA 2017. p. Abstract 1648. Gruppo Italiano Studio Policitemia. Polycythemia vera: the natural history of 1213 patients followed for 20 years. Gruppo Italiano Studio Policitemia. Ann Intern Med. 1995;123(9):656–64. https://doi.org/10.7326/0003-4819-123-9-199511010-00003. • Rambaldi A, Iurlo A, Vannucchi AM, Noble R, von Bubnoff N, Guarini A et al. A two-part study of givinostat in patients with polycythemia vera: the maximum tolerated dose selection and the proof of concept final results. American Society of Hematology Annual Meeting; Atlanta, GA 2017. p. Abstact 253. Abstract of most recent givinostat trial demonstrating high response rates with minimal toxicity. Gisslinger H, Zagrijtschuk O, Buxhofer-Ausch V, Thaler J, Schloegl E, Gastl GA, et al. Ropeginterferon alfa-2b, a novel IFNalpha-2b, induces high response rates with low toxicity in patients with polycythemia vera. Blood. 2015;126(15):1762–9. https://doi.org/10.1182/blood-2015-04-637280. •• Kiladjian J, Klade C, Georgiev P, Krochmalczyk D, Gercheva-Kyuchukova L, Egyed M et al., editors. Thromboembolic risk reduction and high rate of complete molecular response with long-term use of ropeginterferon alpha-2b in polycythemia vera: results from a randomized controlled study. American Society of Hematology; 2019; Orlando, FL. Abstract detailing long-term clinical efficacy of ropeginterferon alfa-2b in the PROUD-PV/CONTINUATION-PV studies. Agency EM. EU marketing authorization for BESREMi® (Ropeginterferon alfa-2b) for rare blood cancer (PV). 2019. https://www.aoporphan.com/uk_en/our-company/newsroom/aoporphan-announces-eu-marketing-authorization-for-besremi-r-ropeginterferon-alfa-2bfor-rare-blood-cancer-pv Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science. 1991;253(5015):49–53. https://doi.org/10.1126/science.1905840. Lu M, Zhang W, Li Y, Berenzon D, Wang X, Wang J, et al. Interferon-alpha targets JAK2V617F-positive hematopoietic progenitor cells and acts through the p38 MAPK pathway. Exp Hematol. 2010;38(6):472–80. https://doi.org/10.1016/j.exphem.2010.03.005. Lu M, Wang X, Li Y, Tripodi J, Mosoyan G, Mascarenhas J, et al. Combination treatment in vitro with Nutlin, a small-molecule antagonist of MDM2, and pegylated interferon-alpha 2a specifically targets JAK2V617F-positive polycythemia vera cells. Blood. 2012;120(15):3098–105. https://doi.org/10.1182/blood-2012-02-410712. Lu M, Xia L, Li Y, Wang X, Hoffman R. The orally bioavailable MDM2 antagonist RG7112 and pegylated interferon alpha 2a target JAK2V617F-positive progenitor and stem cells. Blood. 2014;124(5):771–9. https://doi.org/10.1182/blood-2013-11-536854. •• Mascarenhas J, Lu M, Kosiorek H, Virtgaym E, Xia L, Sandy L, et al. Oral idasanutlin in patients with polycythemia vera. Blood. 2019;134(6):525–33. https://doi.org/10.1182/blood.2018893545Phase 1 study of the MDM2 inhibitor idasanutlin showing impressive response rates with significant reduction inJAK2V617Fallele burden. Ginzburg YZ, Feola M, Zimran E, Varkonyi J, Ganz T, Hoffman R. Dysregulated iron metabolism in polycythemia vera: etiology and consequences. Leukemia. 2018;32(10):2105–16. https://doi.org/10.1038/s41375-018-0207-9. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306(5704):2090–3. https://doi.org/10.1126/science.1104742. Grisouard J, Li S, Kubovcakova L, Rao TN, Meyer SC, Lundberg P, et al. JAK2 exon 12 mutant mice display isolated erythrocytosis and changes in iron metabolism favoring increased erythropoiesis. Blood. 2016;128(6):839–51. https://doi.org/10.1182/blood-2015-12-689216. • Casu C, Oikonomidou PR, Chen H, Nandi V, Ginzburg Y, Prasad P, et al. Minihepcidin peptides as disease modifiers in mice affected by beta-thalassemia and polycythemia vera. Blood. 2016;128(2):265–76. https://doi.org/10.1182/blood-2015-10-676742Preclinical murine model of PV treated with hepcidin showing normalization of hematocrit levels.