Novel Somatostatin Receptor-4 Agonist SM-I-26 Mitigates Lipopolysaccharide-Induced Inflammatory Gene Expression in Microglia

Neurochemical Research - Tập 47 - Trang 768-780 - 2021
Ashok Silwal1, Austin House1, Karin Sandoval1, Shaluah Vijeth1, David Umbaugh1, Albert Crider1, Shirin Mobayen1, William Neumann1, Ken A. Witt1
1Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, USA

Tóm tắt

Somatostatin receptor subtype 4 (SSTR4) is expressed in BV2 microglia, suggesting that SSTR4 agonists may impact microglia function. This study assessed the high-affinity SSTR4 agonist SM-I-26 (SMI) (0 nM, 10 nM, 1000 nM) against lipopolysaccharide (LPS)-induced inflammation (0, 10 or 100 ng/ml) over 6 or 24 h in BV2 microglia. Cell viability, nitrite output and mRNA expression changes of genes associated with our target (Sstr4), inflammation (Tnf-α, Il-6, Il-1β, inos), anti-inflammatory and anti-oxidant actions (Il-10, Catalase), and mediators of Aβ binding/phagocytosis (Msr1, Cd33, Trem1, Trem2) were measured. At 6 h SMI showed no effect across all conditions. At 24 h SMI (10 and 1000 nM) upregulated Sstr4 expression under inflammatory and non-inflammatory conditions. At 24 h SMI downregulated expression of the inflammatory cytokines Tnf-α (1000 nM within all LPS concentrations) and Il-6 (10 nM within 0 and 10 ng/ml LPS). At 24 h 10 nM SMI upregulated Il-10, while 1000 nM upregulated Catalase under inflammatory and non-inflammatory conditions. At 24 h Msr1 and Cd33 were upregulated by 1000 nM SMI under non-inflammatory conditions, while Trem1 was downregulated by 10 and 1000 nM SMI under mildly inflammatory and non-inflammatory conditions. These results show that SMI had concentration and time-dependent effects on mRNA expression of genes associated with different states of microglial activation. The SMI reduced Tnf-α and Il-6 inflammatory gene expression, and increased Il-10 anti-inflammatory gene expression, identifies anti-inflammatory actions of SSTR4 agonists extend to microglia.

Tài liệu tham khảo

Hemonnot AL, Hua J, Ulmann L, Hirbec H (2019) Microglia in Alzheimer disease: well-known targets and new opportunities. Front Aging Neurosci 11:233 Piccioni G, Mango D, Saidi A, Corbo M, Nistico R (2021) Targeting microglia–synapse interactions in Alzheimer’s disease. Int J Mol Sci 22(5):2342 Nichols MR, St-Pierre MK, Wendeln AC, Makoni NJ, Gouwens LK, Garrad EC, Sohrabi M, Neher JJ, Tremblay ME, Combs CK (2019) Inflammatory mechanisms in neurodegeneration. J Neurochem 149:562–581 Sandoval KE, Witt KA, Crider AM, Kontoyianni M (2014) Somatostatin receptor-4 agonists as candidates for treatment of Alzheimer’s disease. In: Rahman AU, Choudhary MI (eds) Frontiers in drug design and discovery. Bentham Science, Sharjah, pp 566–597 Viollet C, Lepousez G, Loudes C, Videau C, Simon A, Epelbaum J (2008) Somatostatinergic systems in brain: networks and functions. Mol Cell Endocrinol 286:75–87 Neumann W, Sandoval K, Mobayen S, Minaeian M, Kukielski S, Srabony K, Frare R, Slater O, Farr S, Niehoff M, Hospital A, Kontoyianni M, Crider A, Witt K (2021) Synthesis and structure–activity relationships of 3, 4, 5-trisubstituted-1, 2, 4-triazoles: high affinity and selective somatostatin receptor-4 agonists for Alzheimer’s disease treatment. J R Soc Chem Med Chem 12:1352–1365 Sandoval KE, Farr SA, Banks WA, Crider AM, Morley JE, Witt KA (2012) Somatostatin receptor subtype-4 agonist NNC 26–9100 decreases extracellular and intracellular Abeta(1–42) trimers. Eur J Pharmacol 683(1–3):116–124 Sandoval KE, Farr SA, Banks WA, Crider AM, Morley JE, Witt KA (2013) Somatostatin receptor subtype-4 agonist NNC 26–9100 mitigates the effect of soluble Abeta oligomers via a metalloproteinase-dependent mechanism. Brain Res 1520:145–156 Sandoval KE, Farr SA, Banks WA, Niehoff ML, Morley JE, Crider AM, Witt KA (2011) Chronic peripheral administration of somatostatin receptor subtype-4 agonist NNC 26–9100 enhances learning and memory in SAMP8 mice. Eur J Pharmacol 654:53–59 Helyes Z, Pinter E, Sandor K, Elekes K, Banvolgyi A, Keszthelyi D, Szoke E, Toth DM, Sandor Z, Kereskai L, Pozsgai G, Allen JP, Emson PC, Markovics A, Szolcsanyi J (2009) Impaired defense mechanism against inflammation, hyperalgesia, and airway hyperreactivity in somatostatin 4 receptor gene-deleted mice. Proc Natl Acad Sci USA 106:13088–13093 Helyes Z, Szabo A, Nemeth J, Jakab B, Pinter E, Banvolgyi A, Kereskai L, Keri G, Szolcsanyi J (2004) Anti-inflammatory and analgesic effects of somatostatin released from capsaicin-sensitive sensory nerve terminals in a Freund’s adjuvant-induced chronic arthritis model in the rat. Arthritis Rheumatol 50:1677–1685 Szoke E, Balint M, Hetenyi C, Markovics A, Elekes K, Pozsgai G, Szuts T, Keri G, Orfi L, Sandor Z, Szolcsanyi J, Pinter E, Helyes Z (2020) Small molecule somatostatin receptor subtype 4 (sst4) agonists are novel anti-inflammatory and analgesic drug candidates. Neuropharmacology 178:108198 Varecza Z, Elekes K, Laszlo T, Perkecz A, Pinter E, Sandor Z, Szolcsanyi J, Keszthelyi D, Szabo A, Sandor K, Molnar TF, Szanto Z, Pongracz JE, Helyes Z (2009) Expression of the somatostatin receptor subtype 4 in intact and inflamed pulmonary tissues. J Histochem Cytochem Off J Histochem Soc 57:1127–1137 Sandoval K, Umbaugh D, House A, Crider A, Witt K (2019) Somatostatin receptor subtype-4 regulates mRNA expression of amyloid-beta degrading enzymes and microglia mediators of phagocytosis in brains of 3xTg-AD mice. Neurochem Res 44:2670–2680 Feindt J, Schmidt A, Mentlein R (1998) Receptors and effects of the inhibitory neuropeptide somatostatin in microglial cells. Brain Res Mol Brain Res 60:228–233 Fleisher-Berkovich S, Filipovich-Rimon T, Ben-Shmuel S, Hulsmann C, Kummer MP, Heneka MT (2010) Distinct modulation of microglial amyloid beta phagocytosis and migration by neuropeptides (i). J Neuroinflamm 7:61 Schober J, Polina J, Walters F, Scott N, Lodholz E, Crider A, Sandoval K, Witt K (2021) NNC 26-9100 increases Abeta1-42 phagocytosis, inhibits nitric oxide production and decreases calcium in BV2 microglia cells. PLoS ONE 16:e0254242 Blasi E, Barluzzi R, Bocchini V, Mazzolla R, Bistoni F (1990) Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J Neuroimmunol 27:229–237 Henn A, Lund S, Hedtjarn M, Schrattenholz A, Porzgen P, Leist M (2009) The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. Altex 26:83–94 Orecchioni M, Ghosheh Y, Pramod AB, Ley K (2019) Macrophage polarization: different gene signatures in M1(LPS+) vs. classically and M2(LPS−) vs. alternatively activated macrophages. Front Immunol 10:1084 Rydbirk R, Folke J, Winge K, Aznar S, Pakkenberg B, Brudek T (2016) Assessment of brain reference genes for RT-qPCR studies in neurodegenerative diseases. Sci Rep 6:37116 Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25:402–408 Mair P, Wilcox R (2017) Robust statistical methods in R: using WRS2 package. Technical Report Yuan JS, Reed A, Chen F, Stewart CN Jr (2006) Statistical analysis of real-time PCR data. BMC Bioinform 7:85 Ankersen M, Crider AM, Liu S, Ho B, Andersen HS, Stidsen CE (1998) Discovery of a novel non-peptide somatostatin agonist with SST4 selectivity. J Am Chem Soc 120:1368–1373 Asiimwe N, Yeo SG, Kim MS, Jung J, Jeong NY (2016) Nitric oxide: exploring the contextual link with Alzheimer’s disease. Oxid Med Cell Longev 2016:7205747 Kummer MP, Hermes M, Delekarte A, Hammerschmidt T, Kumar S, Terwel D, Walter J, Pape HC, Konig S, Roeber S, Jessen F, Klockgether T, Korte M, Heneka MT (2011) Nitration of tyrosine 10 critically enhances amyloid beta aggregation and plaque formation. Neuron 71:833–844 Bai L, Zhang X, Li X, Liu N, Lou F, Ma H, Luo X, Ren Y (2015) Somatostatin prevents lipopolysaccharide-induced neurodegeneration in the rat substantia nigra by inhibiting the activation of microglia. Mol Med Rep 12:1002–1008 Hukovic N, Panetta R, Kumar U, Patel YC (1996) Agonist-dependent regulation of cloned human somatostatin receptor types 1–5 (hSSTR1-5): subtype selective internalization or upregulation. Endocrinology 137:4046–4049 Pinter E, Helyes Z, Szolcsanyi J (2006) Inhibitory effect of somatostatin on inflammation and nociception. Pharmacol Ther 112(4):440–456 Laffer B, Bauer D, Wasmuth S, Busch M, Jalilvand TV, Thanos S, Meyer Zu Horste G, Loser K, Langmann T, Heiligenhaus A, Kasper M (2019) Loss of IL-10 promotes differentiation of microglia to a M1 phenotype. Front Cell Neurosci 13:430 Aloisi F, De Simone R, Columba-Cabezas S, Levi G (1999) Opposite effects of interferon-gamma and prostaglandin E2 on tumor necrosis factor and interleukin-10 production in microglia: a regulatory loop controlling microglia pro- and anti-inflammatory activities. J Neurosci Res 56:571–580 Mizuno T, Sawada M, Marunouchi T, Suzumura A (1994) Production of interleukin-10 by mouse glial cells in culture. Biochem Biophys Res Commun 205:1907–1915 Nandi A, Yan LJ, Jana CK, Das N (2019) Role of catalase in oxidative stress- and age-associated degenerative diseases. Oxid Med Cell Longev 2019:9613090 Ansari MA, Scheff SW (2010) Oxidative stress in the progression of Alzheimer disease in the frontal cortex. J Neuropathol Exp Neurol 69:155–167 Fanelli F, Sepe S, D’Amelio M, Bernardi C, Cristiano L, Cimini A, Cecconi F, Ceru MP, Moreno S (2013) Age-dependent roles of peroxisomes in the hippocampus of a transgenic mouse model of Alzheimer’s disease. Mol Neurodegener 8:8 Franca MB, Lima KC, Eleutherio EC (2017) Oxidative stress and amyloid toxicity: insights from yeast. J Cell Biochem 118:1442–1452 Wilkinson K, El Khoury J (2012) Microglial scavenger receptors and their roles in the pathogenesis of Alzheimer’s disease. Int J Alzheimer’s Dis 2012:489456 El Khoury J, Hickman SE, Thomas CA, Cao L, Silverstein SC, Loike JD (1996) Scavenger receptor-mediated adhesion of microglia to beta-amyloid fibrils. Nature 382:716–719 Yang CN, Shiao YJ, Shie FS, Guo BS, Chen PH, Cho CY, Chen YJ, Huang FL, Tsay HJ (2011) Mechanism mediating oligomeric Abeta clearance by naive primary microglia. Neurobiol Dis 42:221–230 Frenkel D, Wilkinson K, Zhao L, Hickman SE, Means TK, Puckett L, Farfara D, Kingery ND, Weiner HL, El Khoury J (2013) Scara1 deficiency impairs clearance of soluble amyloid-beta by mononuclear phagocytes and accelerates Alzheimer’s-like disease progression. Nat Commun 4:2030 Griciuc A, Serrano-Pozo A, Parrado AR, Lesinski AN, Asselin CN, Mullin K, Hooli B, Choi SH, Hyman BT, Tanzi RE (2013) Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron 78:631–643 Casali BT, Reed-Geaghan EG (2021) Microglial function and regulation during development, homeostasis and Alzheimer’s disease. Cells 10(4):957 Jiang T, Zhang YD, Gao Q, Zhou JS, Zhu XC, Lu H, Shi JQ, Tan L, Chen Q, Yu JT (2016) TREM1 facilitates microglial phagocytosis of amyloid beta. Acta neuropathol 132:667–683 Owens R, Grabert K, Davies CL, Alfieri A, Antel JP, Healy LM, McColl BW (2017) Divergent neuroinflammatory regulation of microglial TREM expression and involvement of NF-kappaB. Front Cell Neurosci 11:56 Zeng H, Ornatowska M, Joo MS, Sadikot RT (2007) TREM-1 expression in macrophages is regulated at transcriptional level by NF-kappaB and PU.1. Eur J Immunol 37:2300–2308 Sharif O, Knapp S (2008) From expression to signaling: roles of TREM-1 and TREM-2 in innate immunity and bacterial infection. Immunobiology 213:701–713