Novel Remarks on Point Mass Sources, Firewalls, Null Singularities and Gravitational Entropy
Tóm tắt
A continuous family of static spherically symmetric solutions of Einstein’s vacuum field equations with a spatial singularity at the origin
$$ r = 0 $$
is found. These solutions are parametrized by a real valued parameter
$$ \lambda $$
(ranging from 0 to 1) and such that the radial horizon’s location is displaced continuously towards the singularity (
$$ r = 0 $$
) as
$$ \lambda $$
increases. In the extreme limit
$$ \lambda = 1$$
, the location of the singularity and horizon merges leading to a null singularity. In this extreme case, any infalling observer hits the null singularity at the very moment he/she crosses the horizon. This fact may have important consequences for the resolution of the fire wall problem and the complementarity controversy in black holes. An heuristic argument is provided how one might avoid the Hawking particle emission process in this extreme case when the singularity and horizon merges. The field equations due to a delta-function point-mass source at
$$ r = 0 $$
are solved and the Euclidean gravitational action corresponding to those solutions is evaluated explicitly. It is found that the Euclidean action is precisely equal to the black hole entropy (in Planck area units). This result holds in any dimensions
$$ D \ge 3 $$
.
Tài liệu tham khảo
Almheiri, A., Marolf, D., Polchinski, J., Sully, J.: Black holes: complementarity or firewalls? arXiv:1207.3123
Brillouin, M.: The singular points of Einstein’s universe. J. Phys. Rad 23, 43 (1923); English translation by S. Antoci can be found at physics/0002009
Castro, C.: The Euclidean gravitational action as black hole entropy, singularities, and spacetime voids. J. Math. Phys. 49, 042501 (2008)
Colombeau, J.F.: New Generalized Functions and Multiplication of Distributions. North Holland, Amsterdam (1984)
Colombeau, J.F.: Elementary introduction to Generalized Functions. North Holland, Amsterdam (1985)
Dvali, G., Gomez, C.: Black hole macro-quantumness. arXiv:1212.0765
Einstein, A.: Der Feldgleichungen der Gravitation. Preuss. Akad. Wiss. Berlin. 844 (1915)
Fischbach, E., Talmadge, C.L.: The Search for Non-Newtonian Gravity. Springer, New York (1999)
Fronsdal, C.: Completion and embedding of the Schwarzschild solution. Phys. Rev. 116, 778 (1959)
Geroch, R., Traschen, J.: Strings and other distributional sources in general relativity. Phys. Rev. D 36, 1017 (1987)
Grosser, M., Kunzinger, M., Oberguggenberger, M., Steinbauer, R.: Geometric Theory of Generalized Functions with Applications to Relativity. Kluwer Series on Mathematics and Its Applications, vol. 537. Kluwer, Dordrecht (2001)
Hawking, S.: Particle creation by black holes. Commun. Math. Phys. 43, 199 (1975)
Heinzke, J., Steinbauer, R.: Remarks on the distributional Schwarzschild Geometry. gr-qc/0112047
Hilbert, D.: Mathematische Probleme. Nachr. Ges. Wiss Gottingen Math. Phys. K1, 53 (1917)
Klimchitskaya, G.L., Mohideen, U., Mostepanenko, V.M.: Constraints on corrections to Newtonian gravity from two recent measurements of the Casimir interaction between metallic surfaces. arXiv:1306.4979
Kruskal, M.: Maximal extension of Schwarzschild metric. Phys. Rev. 119, 1743 (1960)
Lee, B.-H., Yeom, D.-H.: Status report: black hole complementarity controversy. arXiv:1302.6006
Manko, V.: On the properties of exact solutions endowed with negative mass. arXiv:1303.4337
Nagy, S.: Lectures on renormalization and asymptotic safety. arXiv:1211.4151
Niedermaier, M.: The asymptotic safety scenario in quantum gravity—an introduction. gr-qc/0610018
Penrose, R.: The Road to Reality, A Complete Guide to the Laws of the Universe, pp. 836–837. Knopf Publisher, New York (2005)
Reuter, M., Saueressig, F.: Quantum Einstein gravity. arXiv:1202.2274
Schwarzschild, K.: On the gravitational field of a mass point according to Einstein’s theory. Sitzungsber. Preuss. Akad. Berlin. Math. Phys. 1, 189 (1916); English translation by S. Antoci and A. Loinger can be found in physics/9905030
Steinbauer, R., Vickers, J.: The use of generalized functions and distributions in General Relativity. gr-qc/0603078
Susskind, L., Thorlacius, L., Uglum, J.: The stretched horizon and black hole complementarity. Phys. Rev. D 48, 3743 (1993). arXiv:hep-th/9306069
Szekers, G.: On the singularities of a Riemannian manifold. Publ. Mat. Debreca 7, 285 (1960)
Thorne, K., Yurtsever, U.: Wormholes, time machines, and the weak energy condition. Phys. Rev. 61, 1446 (1988)
Verlinde, E.: On the origin of gravity and the laws of Newton. JHEP 1104, 29 (2011)
Visser, M.: Lorentzian Wormholes: From Einstein to Hawking. AIP Press, Woodbury (1995)
Weyl, H.: Zur Gravitationstheorie. Ann. Phys. (Leipzig) 54, 117 (1917)
Wikipedia. http://en.wikipedia.org/wiki/Firewall_(physics)
Wikipedia. http://en.wikipedia.org/wiki/Heaviside_step_function
Wikipedia. http://en.wikipedia.org/wiki/Sign_function
Wolfram Mathworld. http://mathworld.wolfram.com/DeltaFunction.html