Novel Remarks on Point Mass Sources, Firewalls, Null Singularities and Gravitational Entropy

Foundations of Physics - Tập 46 - Trang 14-27 - 2015
Carlos Castro Perelman1,2
1Universidad Tecnica Particular de Loja, Loja, Ecuador
2Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta, USA

Tóm tắt

A continuous family of static spherically symmetric solutions of Einstein’s vacuum field equations with a spatial singularity at the origin $$ r = 0 $$ is found. These solutions are parametrized by a real valued parameter $$ \lambda $$ (ranging from 0 to 1) and such that the radial horizon’s location is displaced continuously towards the singularity ( $$ r = 0 $$ ) as $$ \lambda $$ increases. In the extreme limit $$ \lambda = 1$$ , the location of the singularity and horizon merges leading to a null singularity. In this extreme case, any infalling observer hits the null singularity at the very moment he/she crosses the horizon. This fact may have important consequences for the resolution of the fire wall problem and the complementarity controversy in black holes. An heuristic argument is provided how one might avoid the Hawking particle emission process in this extreme case when the singularity and horizon merges. The field equations due to a delta-function point-mass source at $$ r = 0 $$ are solved and the Euclidean gravitational action corresponding to those solutions is evaluated explicitly. It is found that the Euclidean action is precisely equal to the black hole entropy (in Planck area units). This result holds in any dimensions $$ D \ge 3 $$ .

Tài liệu tham khảo

Almheiri, A., Marolf, D., Polchinski, J., Sully, J.: Black holes: complementarity or firewalls? arXiv:1207.3123 Brillouin, M.: The singular points of Einstein’s universe. J. Phys. Rad 23, 43 (1923); English translation by S. Antoci can be found at physics/0002009 Castro, C.: The Euclidean gravitational action as black hole entropy, singularities, and spacetime voids. J. Math. Phys. 49, 042501 (2008) Colombeau, J.F.: New Generalized Functions and Multiplication of Distributions. North Holland, Amsterdam (1984) Colombeau, J.F.: Elementary introduction to Generalized Functions. North Holland, Amsterdam (1985) Dvali, G., Gomez, C.: Black hole macro-quantumness. arXiv:1212.0765 Einstein, A.: Der Feldgleichungen der Gravitation. Preuss. Akad. Wiss. Berlin. 844 (1915) Fischbach, E., Talmadge, C.L.: The Search for Non-Newtonian Gravity. Springer, New York (1999) Fronsdal, C.: Completion and embedding of the Schwarzschild solution. Phys. Rev. 116, 778 (1959) Geroch, R., Traschen, J.: Strings and other distributional sources in general relativity. Phys. Rev. D 36, 1017 (1987) Grosser, M., Kunzinger, M., Oberguggenberger, M., Steinbauer, R.: Geometric Theory of Generalized Functions with Applications to Relativity. Kluwer Series on Mathematics and Its Applications, vol. 537. Kluwer, Dordrecht (2001) Hawking, S.: Particle creation by black holes. Commun. Math. Phys. 43, 199 (1975) Heinzke, J., Steinbauer, R.: Remarks on the distributional Schwarzschild Geometry. gr-qc/0112047 Hilbert, D.: Mathematische Probleme. Nachr. Ges. Wiss Gottingen Math. Phys. K1, 53 (1917) Klimchitskaya, G.L., Mohideen, U., Mostepanenko, V.M.: Constraints on corrections to Newtonian gravity from two recent measurements of the Casimir interaction between metallic surfaces. arXiv:1306.4979 Kruskal, M.: Maximal extension of Schwarzschild metric. Phys. Rev. 119, 1743 (1960) Lee, B.-H., Yeom, D.-H.: Status report: black hole complementarity controversy. arXiv:1302.6006 Manko, V.: On the properties of exact solutions endowed with negative mass. arXiv:1303.4337 Nagy, S.: Lectures on renormalization and asymptotic safety. arXiv:1211.4151 Niedermaier, M.: The asymptotic safety scenario in quantum gravity—an introduction. gr-qc/0610018 Penrose, R.: The Road to Reality, A Complete Guide to the Laws of the Universe, pp. 836–837. Knopf Publisher, New York (2005) Reuter, M., Saueressig, F.: Quantum Einstein gravity. arXiv:1202.2274 Schwarzschild, K.: On the gravitational field of a mass point according to Einstein’s theory. Sitzungsber. Preuss. Akad. Berlin. Math. Phys. 1, 189 (1916); English translation by S. Antoci and A. Loinger can be found in physics/9905030 Steinbauer, R., Vickers, J.: The use of generalized functions and distributions in General Relativity. gr-qc/0603078 Susskind, L., Thorlacius, L., Uglum, J.: The stretched horizon and black hole complementarity. Phys. Rev. D 48, 3743 (1993). arXiv:hep-th/9306069 Szekers, G.: On the singularities of a Riemannian manifold. Publ. Mat. Debreca 7, 285 (1960) Thorne, K., Yurtsever, U.: Wormholes, time machines, and the weak energy condition. Phys. Rev. 61, 1446 (1988) Verlinde, E.: On the origin of gravity and the laws of Newton. JHEP 1104, 29 (2011) Visser, M.: Lorentzian Wormholes: From Einstein to Hawking. AIP Press, Woodbury (1995) Weyl, H.: Zur Gravitationstheorie. Ann. Phys. (Leipzig) 54, 117 (1917) Wikipedia. http://en.wikipedia.org/wiki/Firewall_(physics) Wikipedia. http://en.wikipedia.org/wiki/Heaviside_step_function Wikipedia. http://en.wikipedia.org/wiki/Sign_function Wolfram Mathworld. http://mathworld.wolfram.com/DeltaFunction.html