Biến đổi Sóng Phân đoạn Bậc 4 Định hướng Mới

Tawseef Ahmad Sheikh1, Neyaz A. Sheikh1
1Department of Mathematics, National Institute of Technology, Srinagar, India

Tóm tắt

Trong bài báo này, chúng tôi giới thiệu khái niệm về biến đổi sóng phân đoạn bậc 4 (FRWT) quaternion mới. Đầu tiên, chúng tôi thiết lập công thức đảo ngược và định lý Parseval cho biến đổi tích phân mới này. Điều kiện cần và đủ để FRWT quaternion bậc $$\alpha $$ trở thành FRWT quaternion của một hàm nào đó cũng được đưa ra. Cuối bài báo, chúng tôi đã đưa ra một vài ví dụ để tìm FRWT quaternion của các hàm.

Từ khóa

#Biến đổi sóng #FRWT quaternion #định lý Parseval #công thức đảo ngược

Tài liệu tham khảo

Ahmad, O., Sheikh, N.A.: Novel special affine wavelet transform and associated uncertainty principles. Int. J. Geom. Methods Mod. Phys. 18(04), 2150055 (2021) Ahmad, O., Sheikh, N.A., Shah, F.A.: Fractional biorthogonal wavelets in \(L_2({\mathbb{R}})\). Applicable Analysis, pp.1–22 (2021) Ahmad, O., Sheikh, N.A., Shah, F.A.: Fractional multiresolution analysis and associated scaling functions in \(L^{2}({\mathbb{R}})\). Anal. Math. Phys. 11(2), 1–20 (2021) Ahmad, O., Sheikh, N.A., Nisar, K.S., Shah, F.A.: Biorthogonal wavelets on the spectrum. Math. Methods Appl. Sci. 44(6), 4479–4490 (2021) Ahmad, O., Achak, A., Sheikh, N.A., Warbhe, U.: Uncertainty principles associated with multi-dimensional linear canonical transform. International Journal of Geometric Methods in Modern Physics, pp. 2250029 (2021) Ahmad, O., Bhat, M.Y., Sheikh, N.A.: Construction of Parseval Framelets Associated with GMRA on local fields of positive characteristic. Numer. Funct. Anal. Optim. 42(3), 344–370 (2021) Ahmad, O., Sheikh, N.A.: Inequalities for wavelet frames with composite dilations in \(L^2({\mathbb{R}}^n)\). Rocky Mountain J. Math. 51(1), 31–41 (2021) Ahmad, O., Ahmad, N.: Construction of nonuniform wavelet frames on non-Archimedean fields. Math. Phys. Anal. Geom. 23(4), 1–20 (2020) Ali, K.K., Abd El Salam, M.A., Mohamed, E.M., Samet, B., Kumar, S., Osman, M.S.: Numerical solution for generalized nonlinear fractional integro-differential equations with linear functional arguments using Chebyshev series. Adv. Difference Equ. 2020(1), 1–23 (2020) Arqub, O.A., Osman, M.S., Abdel-Aty, A.H., Mohamed, A.B.A., Momani, S.: A numerical algorithm for the solutions of ABC singular Lane-Emden type models arising in astrophysics using reproducing kernel discretization method. Mathematics 8(6), 923 (2020) Arqub, O.A., Al-Smadi, M., Almusawa, H., Baleanu, D., Hayat, T., Alhodaly, M., Osman, M.S.: A novel analytical algorithm for generalized fifth-order time-fractional nonlinear evolution equations with conformable time derivative arising in shallow water waves. Alex. Eng. J. 61(7), 5753–5769 (2022) Bayones, F.S., Nisar, K.S., Khan, K.A., Raza, N., Hussien, N.S., Osman, M.S., Abualnaja, K.M.: Magneto-hydrodynamics (MHD) flow analysis with mixed convection moves through a stretching surface. AIP Adv. 11(4), 045001 (2021) Bracewell, R.N.: Convolution, The Fourier transform and its applications, vol. 2, pp. 24–50. McGraw-Hill, New York (1986) Capus, C., Brown, K.: Short-time fractional Fourier methods for the time-frequency representation of chirp signals. J. Acoustical Soc. Amer. 113(6), 3253–3263 (2003) Delsuc, M.A.: Spectral representation of 2D NMR spectra by hypercomplex numbers. J. Magnetic Resonance (1969) 77(1), 119–124 (1988) Dhawan, S., Machado, J.A.T., Brzeziński, D.W., Osman, M.S.: A chebyshev wavelet collocation method for some types of differential problems. Symmetry 13(4), 536 (2021) Djennadi, S., Shawagfeh, N., Osman, M.S., Gómez-Aguilar, J.F., Arqub, O.A.: The Tikhonov regularization method for the inverse source problem of time fractional heat equation in the view of ABC-fractional technique. Phys. Scr. 96(9), 094006 (2021) Durak, L., Arikan, O.: Short-time Fourier transform: two fundamental properties and an optimal implementation. IEEE Trans. Signal Process. 51(5), 1231–1242 (2003) Ell, T.A.: Hypercomplex spectral transformations [PhD thesis]. Minneapolis: University of Minnesota (1992) Ell, T.A.: December. Quaternion-Fourier transforms for analysis of two-dimensional linear time-invariant partial differential systems. In: Proceedings of 32nd IEEE Conference on Decision and Control (pp. 1830-1841). IEEE (1993) Hamilton, W.R.: On a new species of imaginary quantities, connected with the theory of quaternions. Proc. R. Irish Acad. 1836–1869(2), 424–434 (1840) Hamilton, W.R.: On quaternions; or on a new system of imaginaries in algebra, letter to John T. Graves (October 1843) (1843) He, J., Yu, B.: Continuous wavelet transforms on the space \(L_2({\mathbb{R}},H, dx)\). Appl. Math. Lett. 17(1), 111–121 (2004) Huang, Y., Suter, B.: September. Fractional wave packet transform. In: 1996 IEEE Digital Signal Processing Workshop Proceedings (pp. 413-415). IEEE (1996) Inan, B., Osman, M.S., Ak, T., Baleanu, D.: Analytical and numerical solutions of mathematical biology models: The Newell-Whitehead-Segel and Allen-Cahn equations. Math. Methods Appl. Sci. 43(5), 2588–2600 (2020) Khalid, A., Rehan, A., Nisar, K.S., Osman, M.S.: Splines solutions of boundary value problems that arises in sculpturing electrical process of motors with two rotating mechanism circuit. Phys. Scr. 96(10), 104001 (2021) Mendlovic, D., Zalevsky, Z., Mas, D., García, J., Ferreira, C.: Fractional wavelet transform. Appl. Opt. 36(20), 4801–4806 (1997) Ozaktas, H.M., Aytür, O.: Fractional fourier domains. Signal Process. 46(1), 119–124 (1995) Prasad, A., Manna, S., Mahato, A., Singh, V.K.: The generalized continuous wavelet transform associated with the fractional Fourier transform. J. Comput. Appl. Math. 259, 660–671 (2014) Sharma, P.B., Prasad, A.: Composition of Quadratic-Phase Fourier Wavelet Transform. Int. J. Appl. Comput. Math. 8(3), 1–14 (2022) Shi, J., Zhang, N., Liu, X.: A novel fractional wavelet transform and its applications. SCIENCE CHINA Inf. Sci. 55(6), 1270–1279 (2012) Sommen, F.: Hypercomplex Fourier and Laplace transforms II. Complex Var. Elliptic Equ. 1(2–3), 209–238 (1983) Sommen, F.: Hypercomplex Fourier and Laplace transforms I. Ill. J. Math. 26(2), 332–352 (1982) Zhao, J., Peng, L.: Quaternion-valued admissible wavelets associated with the 2-dimensional Euclidean group with dilations. J. Nat. Geom. 20(1/2), 21–32 (2001)