Novel Insights into Membrane Targeting of B Cell Lymphoma
Tài liệu tham khảo
Küppers, 2001, Mechanisms of chromosomal translocations in B cell lymphomas, Oncogene, 20, 5580, 10.1038/sj.onc.1204640
Blombery, 2015, The molecular pathogenesis of B-cell non-Hodgkin lymphoma, Eur. J. Haematol., 95, 280, 10.1111/ejh.12589
Alizadeh, 2000, Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling, Nature, 403, 503, 10.1038/35000501
Davis, 2010, Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma, Nature, 463, 88, 10.1038/nature08638
Schmitz, 2014, Oncogenic mechanisms in Burkitt lymphoma, Cold Spring Harb. Perspect. Med., 4, a014282, 10.1101/cshperspect.a014282
Kridel, 2012, Pathogenesis of follicular lymphoma, J. Clin. Invest., 122, 3424, 10.1172/JCI63186
Tilly, 2015, Diffuse large B-cell lymphoma (DLBCL): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up, Ann. Oncol., 26, v116, 10.1093/annonc/mdv304
Casulo, 2015, Early relapse of follicular lymphoma after rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone defines patients at high risk for death: an analysis from the National LymphoCare Study, J. Clin. Oncol., 33, 2516, 10.1200/JCO.2014.59.7534
Dreyling, 2016, Newly diagnosed and relapsed follicular lymphoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up, Ann. Oncol., 27, v83, 10.1093/annonc/mdw400
Sant, 2014, Survival for haematological malignancies in Europe between 1997 and 2008 by region and age: results of EUROCARE-5, a population-based study, Lancet Oncol., 15, 931, 10.1016/S1470-2045(14)70282-7
Wildes, 2014, Rituximab is associated with improved survival in Burkitt lymphoma: a retrospective analysis from two US academic medical centers, Ther. Adv. Hematol., 5, 3, 10.1177/2040620713514682
Colosia, 2014, Clinical efficacy and safety in relapsed/refractory diffuse large B-cell lymphoma: a systematic literature review, Clin. Lymphoma Myeloma Leuk., 14, 343, 10.1016/j.clml.2014.02.012
Tan, 2013, Improvements in observed and relative survival in follicular grade 1–2 lymphoma during 4 decades: the Stanford University experience, Blood, 122, 981, 10.1182/blood-2013-03-491514
Martin, 2016, Targeting microenvironment in cancer therapeutics, Oncotarget, 7, 52575, 10.18632/oncotarget.9824
Horn, 2017, New targeted therapies for malignant lymphoma based on molecular heterogeneity, Expert Rev. Hematol., 10, 39, 10.1080/17474086.2017.1268046
Tedder, 1994, CD20: a regulator of cell-cycle progression of B lymphocytes, Immunol. Today, 15, 450, 10.1016/0167-5699(94)90276-3
Nadler, 1981, A unique cell surface antigen identifying lymphoid malignancies of B cell origin, J. Clin. Invest., 67, 134, 10.1172/JCI110005
Beers, 2010, CD20 as a target for therapeutic type i and ii monoclonal antibodies, Semin. Hematol, 47, 107, 10.1053/j.seminhematol.2010.01.001
Teo, 2016, A review of monoclonal antibody therapies in lymphoma, Crit. Rev. Oncol. Hematol., 97, 72, 10.1016/j.critrevonc.2015.08.014
Venkitaraman, 1991, The B-cell antigen receptor of the five immunoglobulin classes, Nature, 352, 777, 10.1038/352777a0
Tolar, 2010, A conformation-induced oligomerization model for B cell receptor microclustering and signaling, Curr. Top. Microbiol. Immunol., 340, 155
Yang, 2010, Oligomeric organization of the B-cell antigen receptor on resting cells, Nature, 467, 465, 10.1038/nature09357
Kläsener, 2014, B cell activation involves nanoscale receptor reorganizations and inside-out signaling by Syk, Elife, 3, e02069, 10.7554/eLife.02069
Maecker, 1997, Normal lymphocyte development but delayed humoral immune response in CD81-null mice, J. Exp. Med., 185, 1505, 10.1084/jem.185.8.1505
Mattila, 2013, The actin and tetraspanin networks organize receptor nanoclusters to regulate B cell receptor-mediated signaling, Immunity, 38, 461, 10.1016/j.immuni.2012.11.019
Rickert, 2013, New insights into pre-BCR and BCR signalling with relevance to B cell malignancies, Nat. Rev. Immunol., 13, 578, 10.1038/nri3487
Sander, 2012, Synergy between PI3K signaling and MYC in Burkitt lymphomagenesis, Cancer Cell, 22, 167, 10.1016/j.ccr.2012.06.012
Young, 2015, Survival of human lymphoma cells requires B-cell receptor engagement by self-antigens, Proc. Natl. Acad. Sci. U. S. A., 112, 13447, 10.1073/pnas.1514944112
Lenz, 2008, Oncogenic CARD11 mutations in human diffuse large B cell lymphoma, Science, 319, 1676, 10.1126/science.1153629
Sachen, 2012, Self-antigen recognition by follicular lymphoma B-cell receptors, Blood, 120, 4181, 10.1182/blood-2012-05-427534
Cha, 2013, Nonstereotyped lymphoma B cell receptors recognize vimentin as a shared autoantigen, J. Immunol., 190, 4887, 10.4049/jimmunol.1300179
Radcliffe, 2007, Human follicular lymphoma cells contain oligomannose glycans in the antigen-binding site of the B-cell receptor, J. Biol. Chem., 282, 7405, 10.1074/jbc.M602690200
Coelho, 2010, Glycosylation of surface Ig creates a functional bridge between human follicular lymphoma and microenvironmental lectins, Proc. Natl. Acad. Sci. U. S. A., 107, 18587, 10.1073/pnas.1009388107
Linley, 2015, Lectin binding to surface Ig variable regions provides a universal persistent activating signal for follicular lymphoma cells, Blood, 126, 1902, 10.1182/blood-2015-04-640805
Amin, 2015, DC-SIGN-expressing macrophages trigger activation of mannosylated IgM B-cell receptor in follicular lymphoma, Blood, 126, 1911, 10.1182/blood-2015-04-640912
Meeker, 1985, A clinical trial of anti-idiotype therapy for B cell malignancy, Blood, 65, 1349, 10.1182/blood.V65.6.1349.bloodjournal6561349
Torchia, 2016, Targeting lymphoma with precision using semisynthetic anti-idiotype peptibodies, Proc. Natl. Acad. Sci. U. S. A., 113, 5376, 10.1073/pnas.1603335113
Palanca-Wessels, 2015, Safety and activity of the anti-CD79B antibody-drug conjugate polatuzumab vedotin in relapsed or refractory B-cell non-Hodgkin lymphoma and chronic lymphocytic leukaemia: a phase 1 study, Lancet Oncol., 16, 704, 10.1016/S1470-2045(15)70128-2
Shank, 2017, Chimeric antigen receptor T cells in hematologic malignancies, Pharmacotherapy, 37, 334, 10.1002/phar.1900
Goebeler, 2016, Blinatumomab: a CD19/CD3 bispecific T cell engager (BiTE) with unique anti-tumor efficacy, Leuk. Lymphoma, 57, 1021, 10.3109/10428194.2016.1161185
Couzin-Frankel, 2013, Breakthrough of the year 2013. Cancer immunotherapy, Science, 342, 1432, 10.1126/science.342.6165.1432
Goodman, 2017, PD-1–PD-L1 immune-checkpoint blockade in B-cell lymphomas, Nat. Rev. Clin. Oncol., 14, 203, 10.1038/nrclinonc.2016.168
Hoos, 2016, Development of immuno-oncology drugs – from CTLA4 to PD1 to the next generations, Nat. Rev. Drug Discov., 15, 235, 10.1038/nrd.2015.35
Younes, 2016, Nivolumab for classical Hodgkin’s lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial, Lancet Oncol., 17, 1283, 10.1016/S1470-2045(16)30167-X
Armand, 2013, Disabling immune tolerance by programmed death-1 blockade with pidilizumab after autologous hematopoietic stem-cell transplantation for diffuse large b-cell lymphoma: results of an international phase II trial, J. Clin. Oncol., 31, 4199, 10.1200/JCO.2012.48.3685
Lesokhin, 2016, Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study, J. Clin. Oncol., 34, 2698, 10.1200/JCO.2015.65.9789
Andorsky, 2011, Programmed death ligand 1 is expressed by non-Hodgkin lymphomas and inhibits the activity of tumor-associated T cells, Clin. Cancer Res., 17, 4232, 10.1158/1078-0432.CCR-10-2660
Menter, 2016, Evaluation of the diagnostic and prognostic value of PDL1 expression in Hodgkin and B-cell lymphomas, Hum. Pathol., 54, 17, 10.1016/j.humpath.2016.03.005
Chen, 2013, PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies, Clin. Cancer Res., 19, 3462, 10.1158/1078-0432.CCR-13-0855
Myklebust, 2013, High PD-1 expression and suppressed cytokine signaling distinguish T cells infiltrating follicular lymphoma tumors from peripheral T cells, Blood, 121, 1367, 10.1182/blood-2012-04-421826
Westin, 2014, Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: a single group, open-label, phase 2 trial, Lancet Oncol., 15, 69, 10.1016/S1470-2045(13)70551-5
Tsirigotis, 2016, Programmed death-1 immune checkpoint blockade in the treatment of hematological malignancies, Ann. Med., 3890, 1
McClanahan, 2016, Catching up with solid tumor oncology: what is the evidence for a prognostic role of programmed cell death-ligand 1/programmed cell death-1 expression in B-cell lymphomas?, Haematologica, 101, 1144, 10.3324/haematol.2016.145904
van Spriel, 2009, The tetraspanin protein CD37 regulates IgA responses and anti-fungal immunity, PLoS Pathog., 5, e1000338, 10.1371/journal.ppat.1000338
de Winde, 2015, Multispectral imaging reveals the tissue distribution of tetraspanins in human lymphoid organs, Histochem. Cell Biol., 144, 133, 10.1007/s00418-015-1326-2
de Winde, 2016, Tetraspanin CD37 protects against the development of B cell lymphoma, J. Clin. Invest., 126, 653, 10.1172/JCI81041
Xu-Monette, 2016, Assessment of CD37 B-cell antigen and cell-of-origin significantly improves risk prediction in diffuse large B-cell lymphoma, Blood, 128, 3083, 10.1182/blood-2016-05-715094
Barrena, 2005, Aberrant expression of tetraspanin molecules in B-cell chronic lymphoproliferative disorders and its correlation with normal B-cell maturation, Leukemia, 19, 1376, 10.1038/sj.leu.2403822
Press, 1989, Treatment of refractory non-Hodgkin’s lymphoma with radiolabeled MB-1 (anti-CD37) antibody, J. Clin. Oncol., 7, 1027, 10.1200/JCO.1989.7.8.1027
Zhao, 2007, Targeting CD37-positive lymphoid malignancies with a novel engineered small modular immunopharmaceutical, Blood, 110, 2569, 10.1182/blood-2006-12-062927
Beckwith a, 2015, Tetraspanins as therapeutic targets in hematological malignancy: a concise review, Front. Physiol., 6, 1, 10.3389/fphys.2015.00091
Robak, 2016, Antibody therapy alone and in combination with targeted drugs in chronic lymphocytic leukemia, Semin. Oncol., 43, 280, 10.1053/j.seminoncol.2016.02.010
Lapalombella, 2012, Tetraspanin CD37 directly mediates transduction of survival and apoptotic signals, Cancer Cell, 21, 694, 10.1016/j.ccr.2012.03.040
Deckert, 2013, A novel anti-CD37 antibody–drug conjugate with multiple anti-tumor mechanisms for the treatment of B-cell malignancies, Blood, 122, 3500, 10.1182/blood-2013-05-505685
Dahle, 2013, Evaluating antigen targeting and anti-tumor activity of a new anti-CD37 radioimmunoconjugate against non-Hodgkin’s lymphoma, Anticancer Res., 33, 85
van Spriel, 2012, The tetraspanin CD37 orchestrates the alpha4beta1 integrin–Akt signaling axis and supports long-lived plasma cell survival, Sci. Signal., 5, ra82, 10.1126/scisignal.2003113
Burger, 2013, Impact of interleukin-6 in hematological malignancies, Transfus. Med. Hemother., 40, 336, 10.1159/000354194
Ferrario, 2017, Siltuximab and hematologic malignancies. A focus in non Hodgkin lymphoma, Expert Opin. Investig. Drugs, 26, 367, 10.1080/13543784.2017.1288213
Szöllósi, 1996, Supramolecular complexes of MHC class I, MHC class II, CD20, and tetraspan molecules (CD53, CD81, and CD82) at the surface of a B cell line JY, J. Immunol., 157, 2939, 10.4049/jimmunol.157.7.2939
Petrie, 2002, Colocalization of the B cell receptor and CD20 followed by activation-dependent dissociation in distinct lipid rafts, J. Immunol., 169, 2886, 10.4049/jimmunol.169.6.2886
Polyak, 2008, CD20 homo-oligomers physically associate with the B cell antigen receptor: dissociation upon receptor engagement and recruitment of phosphoproteins and calmodulin-binding proteins, J. Biol. Chem., 283, 18545, 10.1074/jbc.M800784200
Zuidscherwoude, 2015, The tetraspanin web revisited by super-resolution microscopy, Sci. Rep., 5, 12201, 10.1038/srep12201
Hryniewicz-Jankowska, 2014, Membrane rafts as a novel target in cancer therapy, Biochim. Biophys. Acta, 1845, 155
Delos Santos, 2015, Charming neighborhoods on the cell surface: plasma membrane microdomains regulate receptor tyrosine kinase signaling, Cell Signal., 27, 1963, 10.1016/j.cellsig.2015.07.004
Zuidscherwoude, 2014, Microdomains in the membrane landscape shape antigen-presenting cell function, J. Leukoc. Biol., 95, 251, 10.1189/jlb.0813440
Brown, 1992, Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface, Cell, 68, 533, 10.1016/0092-8674(92)90189-J
Simons, 1997, Functional rafts in cell membranes, Nature, 387, 569, 10.1038/42408
Hemler, 2005, Tetraspanin functions and associated microdomains, Nat. Rev. Mol. Cell Biol., 6, 801, 10.1038/nrm1736
Levy, 2005, The tetraspanin web modulates immune-signalling complexes, Nat. Rev. Immunol., 5, 136, 10.1038/nri1548
Charrin, 2009, Lateral organization of membrane proteins: tetraspanins spin their web, Biochem. J., 420, 133, 10.1042/BJ20082422
Claas, 2001, Evaluation of prototype transmembrane 4 superfamily protein complexes and their relation to lipid rafts, J. Biol. Chem., 276, 7974, 10.1074/jbc.M008650200
Hemler, 2003, Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain, Annu. Rev. Cell Dev. Biol., 19, 397, 10.1146/annurev.cellbio.19.111301.153609
Huang, 2005, The phylogenetic analysis of tetraspanins projects the evolution of cell–cell interactions from unicellular to multicellular organisms, Genomics, 86, 674, 10.1016/j.ygeno.2005.08.004
Wright, 1994, The ins and outs of the transmembrane 4 superfamily, Immunol. Today, 15, 588, 10.1016/0167-5699(94)90222-4
S.J. van Deventer, et al., Molecular interactions shaping the tetraspanin web. Biochem. Soc. Trans.(in press).
Wright, 2000, The L6 membrane proteins – a new four-transmembrane superfamily, Protein Sci, 9, 1594, 10.1110/ps.9.8.1594
Hemler, 2014, Tetraspanin proteins promote multiple cancer stages, Nat. Rev. Cancer, 14, 49, 10.1038/nrc3640