Novel EST-SSRs for an important quarantine pest Liriomyza sativae (Diptera: Agromyzidae) and their cross-species transferability

Applied Entomology and Zoology - Tập 57 - Trang 151-160 - 2022
Tiansheng Liu1,2,3, Xue Zhan1,2, Jinyu Li1,2, Fushi Ke4, Xiangyu Zhu1,2, Yanting Chen1,2, Weiyi He1,2, Shijun You1,2
1State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
2Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
3Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
4School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China

Tóm tắt

Liriomyza sativae is a globally distributed quarantine pest. We isolated polymorphic microsatellite loci from transcriptomic data for this species and tested their potential application in population genetics and cross-species transferability in other Agromyzidae species. Of the 130 microsatellite loci selected for validation, 40 were successfully amplified, and 18 were verified as polymorphic in L. sativae. The number of alleles (Na) ranged from two to ten, with polymorphism information content (PIC) values between 0.289 and 0.818. Observed (HO) and expected (HE) heterozygosity varied from 0.250 to 0.900 and 0.314 to 0.859, respectively. Low among-population differentiation was also indicated by pairwise FST (0.032–0.045). Structure analysis and principal coordinate analysis (PCoA) suggested three clusters for the 94 samples from three different locations (FZNT, SMSX, and QZYC) in Fujian Province, China. The low genetic differentiation and clear genetic structure among populations of this invasive species may result from extensive human activity. In additional, cross-species tests validated the amplification of 16, 19, 11 and 9 of 40 loci in Liriomyza huidobrensis, Liriomyza trifolii, Chromatomyia horticola and Ophiomyia phaseoli, respectively, showed the potential application of these markers for population genetic analysis in these species.

Tài liệu tham khảo

Abdelkrim J, Bstanton JAR, Gemmell N (2009) Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing. Biotechniques 46:185–192 Abe Y, Tokumaru S (2008) Displacement in two invasive species of leafminer fly in different localities. Biol Invasions 10:951–953 Andreas U, Ioana C, Triinu K, Jian Y, Faircloth BC, Maido R, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115 Ascunce MS, Yang CC, Oakey J, Calcaterra L, Wu WJ, Shih CJ, Goudet J, Ross KG, Shoemaker D (2011) Global invasion history of the fire ant Solenopsis invicta. Science 331:1066–1068 Barnes TC, Izzo C, Bertozzi T, Saint KM, Donnellan S, Hammer MP, Gillanders BM (2014) Development of 15 microsatellite loci from mulloway, Argyrosomus japonicus (Pisces: Sciaenidae) using next generation sequencing and an assessment of their cross amplification in other sciaenids. Conserv Genet Resour 6:345–348 Blacket MJ, Rice AD, Semeraro L, Malipatil MB (2015) DNA-based identifications reveal multiple introductions of the vegetable leafminer Liriomyza sativae (Diptera: Agromyzidae) into the Torres Strait Islands and Papua New Guinea. Bull Entomol Res 105:1 Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314 Bruford MW, Wayne RK (1993) Microsatellites and their application to population genetic studies. Curr Opin Genet Dev 3:939–943 Cao LJ, Wen JB, Wei SJ, Liu J, Yang F, Chen M (2015) Characterization of novel microsatellite markers for Hyphantria cunea and implications for other Lepidoptera. Bull Entomol Res 105:273–284 Caron V, Norgate M, Ede FJ, Nyman T, Sunnucks P (2013) Novel microsatellite DNA markers indicate strict parthenogenesis and few genotypes in the invasive willow sawfly Nematus oligospilus. Bull Entomol Res 103:74–88 Carreras-Carbonell J, Macpherson E, Pascual M (2008) Utility of pairwise mtDNA genetic distances for predicting cross-species microsatellite amplification and polymorphism success in fishes. Conserv Genet 9:181–190 Carvajal-Rodriguez A (2018) Myriads: p-value-based multiple testing correction. Bioinformatics 34:1043–1045 Carvajal-Rodriguez A, Uñaalvarez JD (2011) Assessing significance in high-throughput experiments by sequential goodness of fit and q-value estimation. PLoS ONE 6:e24700 Chen B, Kang L (2005) Implication of pupal cold tolerance for the northern over-wintering range limit of the leafminer Liriomyza sativae (Diptera: Agromyzidae) in China. Appl Entomol Zool 40:437–446 Chiang YC, Huang BH, Shih HC, Hsu TW, Chang CW, Liao PC (2012) Characterization of 24 transferable microsatellite loci in four skullcaps (Scutellaria, Labiatae). Am J Bot 99:e24-27 Culver M, Menotti-Raymond MA, O’brien SJ (2001) Patterns of size homoplasy at 10 microsatellite loci in pumas (Puma concolor). Mol Biol Evol 18:1151–1156 Dettman JR, Taylor JW (2004) Mutation and evolution of microsatellite loci in Neurospora. Genetics 168:1231–1248 Di RA, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci USA 91:3166–3170 Doums C, Cabrera H, Peeters C (2002) Population genetic structure and male-biased dispersal in the queenless ant Diacamma cyaneiventre. Mol Ecol 11:2251–2264 Du Y, Wang L, Lu W, Zheng F, Lu Z (2008) Differentiation of different host-populations and geo-populations of Liriomyza sativae Blanchard based on β-tubulin gene sequences. Sci Agric Sin 41:1542–1547 Du YZ, Tang XT, Wang LP, Shen Y, Chang YW (2014) Genetic differentiation of geographical populations of Liriomyza sativae (Diptera: Agromyzidae) in China based on mitochondrial COI gene sequences. DNA Seq 27:3936–3940 Durand J, Bodenes C, Chancerel E, Frigerio JM, Vendramin G, Sebastiani F, Buonamici A, Gailing O, Koelewijn HP, Villani F, Mattioni C, Cherubini M, Goicoechea PG, Herran A, Ikaran Z, Cabane C, Ueno S, Alberto F, Dumoulin PY, Guichoux E, De Daruvar A, Kremer A, Plomion C (2010) A fast and cost-effective approach to develop and map EST-SSR markers: oak as a case study. BMC Genom 11:570 Earl DA, Vonholdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361 Ellegren H (2000) Microsatellite mutations in the germline: implications for evolutionary inference. Trends Genet 16:551–558 Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435 Estoup A (1999) Microsatellite evolution: inferences from population data. Microsatellites evolution and applications. Oxford University Press, pp 49–65 Estoup A, Tailliez C, Cornuet JM, Solignac M (1995) Size homoplasy and mutational processes of interrupted microsatellites in two bee species, Apis mellifera and Bombus terrestris (Apidae). Mol Biol Evol 12:1074–1084 Evanno G, Regnaut S, Goudet J (2010) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620 Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587 Gardner MG, Fitch AJ, Terry B, Lowe AJ (2011) Rise of the machines–recommendations for ecologists when using next generation sequencing for microsatellite development. Mol Ecol Res 11:1093–1101 Gibbons JG, Janson EM, Chris Todd H, Mark J, Patrick A, Antonis R (2009) Benchmarking next-generation transcriptome sequencing for functional and evolutionary genomics. Mol Biol Evol 26:2731–2744 Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–652 Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801 Jeffreys H (1935) Some tests of significance, treated by the theory of probability. Math Proc 31(2):203–222 Johansson H, Seppä P, Helanterä H, Trontti K, Sundström L (2018) Weak population structure in the ant Formica fusca. Peer J 6:e5024 Kimura M, Crow JF (1964) The number of alleles that can be maintained in a finite population. Genetics 49:725–738 Kimura M, Ohta T (1978) Stepwise mutation model and distribution of allelic frequencies in a finite population. Proc Natl Acad Sci USA 75:2868–2872 Lee EC (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391 Li CY, Chiang TY, Chiang YC, Hsu HM, Ge XJ, Huang CC, Chen CT, Hung KH (2016) Cross-species, amplifiable EST-SSR markers for Amentotaxus species obtained by next-generation sequencing. Molecules (basel, Switzerland) 21:67 Matthieu F, Oscar G (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993 Nagy S, Poczai P, Gorji AM, Hegedűs G, Taller J (2012) PICcalc: an online program to calculate polymorphic information content for molecular genetic studies. Biochem Genet 50:670–672 Nakamura S, Masuda T, Mochizuki A, Konishi K, Tokumaru S, Ueno K, Yamaguchi T (2013) Primer design for identifying economically important Liriomyza species (Diptera: Agromyzidae) by multiplex PCR. Mol Ecol Res 13:96–102 Palumbo JC, Mullis JCH, Reyes FJ (1994) Composition, seasonal abundance, and parasitism of Liriomyza (Diptera: Agromyzidae) species on lettuce in Arizona. J Econ Entomol 87:8 Parrella MP (1987) Biology of Liriomyza. Annu Rev Entomol 32:201–224 Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research–an update. Bioinformatics 28:2537–2539 Primmer CR, Moller AP, Ellegren H (1996) A wide-range survey of cross-species microsatellite amplification in birds. Mol Ecol 5:365–378 Primmer CR, Painter JN, Koskinen MT, Palo JU, Merila J (2005) Factors affecting avian cross-species microsatellite amplification. J Avian Biol 36:348–360 Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959 Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138 Rousset F (2008) GENEPOP’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106 Schlötterer C (2000) Evolutionary dynamics of microsatellite DNA. Chromosoma 109(6):365–371 Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234 Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629 Spencer KA (1973) Agromyzidae (Diptera) of economic importance. Springer Spencer KA, Steyskal GC (1986) Manual of the Agromyzidae (Diptera) of the United States. USDA, Washington Sunnucks P (2000) Efficient genetic markers for population biology. Trends Ecol Evol 15:199–203 Tang XT, Ji Y, Chang YW, Shen Y, Tian ZH, Gong WR, Du YZ (2015a) Population genetic structure and migration patterns of Liriomyza sativae in China: moderate subdivision and no bridgehead effect revealed by microsatellites. Bull Entomol Res 106:1 Tang XT, Tao HH, Du YZ (2015b) Microsatellite-based analysis of the genetic structure and diversity of Aleurocanthus spiniferus (Hemiptera: Aleyrodidae) from tea plants in China. Gene 560:107–113 Tao Y, Li F, Xiaoyan Z, Jinguo H, Shiying B, Junjie H, Ling L, Yuhua H, Junye J, Fang W (2015) High-throughput development of SSR markers from Pea (Pisum sativum L.) based on next generation sequencing of a purified Chinese commercial variety. PLoS ONE 10:e0139775 Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422 Valade R, Kenis M, Hernandez-Lopez A, Augustin S, Mari Mena N, Magnoux E, Rougerie R, Lakatos F, Roques A, Lopez-Vaamonde C (2009) Mitochondrial and microsatellite DNA markers reveal a Balkan origin for the highly invasive horse-chestnut leaf miner Cameraria ohridella (Lepidoptera, Gracillariidae). Mol Ecol 18:3458–3470 Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538 Weber JL, Wong C (1993) Mutation of human short tandem repeats. Hum Mol Genet 2:1123–1128 Wen ZJ, Wang Y, Lei ZR (1996) New recode of Liriomyza sativae Blanchard (Diptera: Agromyzidae) from China. Entomotaxonomia 18:2 Wright JM, Bentzen P (1994) Microsatellites: genetic markers for the future. Rev Fish Biol Fish 4:384–388 Zalapa JE, Hugo C, Huayu Z, Shawn S, Douglas S, Eric Z, Brent MC, Rebecca H, Philipp S (2012) Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Am J Bot 99:193–208 Zhai L, Xu L, Wang Y, Cheng H, Chen Y, Gong Y, Liu L (2014) Novel and useful genic-SSR markers from de novo transcriptome sequencing of radish (Raphanus sativus L.). Mol Breed 33:611–624 Zhao YX, Kang L (2010) Role of plant volatiles in host plant location of the leafminer, Liriomyza sativae (Diptera: Agromyzidae). Physiol Entomol 27:103–111