Notes on the characterization of derivations
Tóm tắt
Although the characterization of ring derivations has an extensive literature, up to now, all of the characterizations have had the following form: additivity and another property imply that the function in question is a derivation. The aim of this note is to point out that derivations can be described via a single equation.
Tài liệu tham khảo
J. Aczél, The general solution of two functional equations by reduction to functions additive in two variables and with the aid of Hamel bases, Glasnik Mat.-Fiz. Astronom. Ser. II Društvo Mat. Fiz. Hrvatske, 20 (1965), 65–73.
T. M. K. Davison and B. R. Ebanks, Cocycles on cancellative semigroups, Publ. Math. Debrecen, 46 (1995), 137–147.
J. Dhombres, Relations de dépendance entre les équations fonctionnelles de Cauchy, Aequationes Math., 35 (1988), 186–212.
B. R. Ebanks, On some functional equations of Jessen, Karpf and Thorup, Math. Scand., 44 (1979), 231–324.
B. R. Ebanks, Kurepa’s functional equation on semigroups, Stochastica, 6 (1982), 39–55.
J. Erdős, A remark on the paper “On some functional equations” by S. Kurepa, Glasnik Mat.-Fiz. Astr. Društvo Mat. Fiz. Hrvatske. Ser. II, 14 (1959), 3–5.
R. Ger, On an equation of ring homomorphisms, Publ. Math. Debrecen, 52 (1998), 397–417.
R. Ger, Ring homomorphisms equation revisited, Rocznik Nauk.-Dydakt. Prace Mat., 17 (2000), 101–115.
R. Ger and L. Reich, A generalized ring homomorphisms equation, Monatsh. Math., 159 (2010), 225–233.
S. Horinouchi and Pl. Kannappan, On the system of functional equations f(x + y) = f(x) + f(y) and f(xy) = p(x)f(y) + q(y)f(x), Aequationes Math., 6 (1971), 195–201.
M. Hosszú, On a functional equation treated by S. Kurepa, Glasnik Mat.-Fiz. Astronom. Društvo Mat. Fiz. Hrvatske Ser. II, 18 (1963), 59–60.
B. Jessen, J. Karpf and A. Thorup, Some functional equations in groups and rings, Math. Scand., 22 (1968), 257–265.
W. B. Jurkat, On Cauchy’s functional equation, Proc. Amer. Math. Soc., 16 (1965), 683–686.
M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities. Cauchy’s equation and Jensen’s inequality, 2nd edition, Birkhäuser Verlag AG, Basel - Boston - Berlin, 2009.
S. Kurepa, The Cauchy functional equation and scalar product in vector spaces, Glasnik Mat.-Fiz. Astronom. Ser. II Društvo Mat. Fiz. Hrvatske, 19 (1964), 23–36.
S. Kurepa, Remarks on the Cauchy functional equation, Publ. Inst. Math. (Beograd) (N.S.), 5 (1965), 85–88.
O. Zscariski and P. Samuel, Commutative algebra, Volume I., D. Van Nostrand Company, Inc., Princeton, New Jersey, 1958.
