Notes on contact η-Einstein metrics as Ricci solitons
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry - Tập 54 - Trang 567-573 - 2012
Tóm tắt
We prove that if the metric of an η-Einstein contact metric manifold is a non-trivial Ricci soliton, then it is K-contact.
Tài liệu tham khảo
Baird P., Danielo L.: Three-dimensional Ricci solitons which project to surfaces. J. Reine Angew. Math. 608, 65–91 (2007)
Blair, D.E.:Riemannian Geometry of Contact and Symplectic Manifolds: Progress in Math, p. 203, Birkhauser, Basel (2002)
Blair D.E., Koufogiorgos T., Papantoniou B.J.: Contact metric manifolds satisfying a nullity condition. Israel J. Math. 91, 189–214 (1995)
Blair D.E., Koufogiorgos T., Sharma R.: A classification of 3-dimensional contact metric manifolds with Qφ = φQ. Kodai Math. J. 13, 391–401 (1990)
Boyer C.P., Galicki K.: Einstein manifolds and contact geometry. Proc. Amer. Math. Soc. 129, 2419–2430 (2001)
Cho J.T., Sharma R.: Contact geometry and Ricci solitons. Int.J. Geom. Methods Math. Phys. 7, 951–960 (2010)
Chow, B., Knopf, D.: The Ricci flow: An introduction, Mathematical Surveys and Monographs. 110, American Math. Soc., (2004)
Ghosh A., Sharma R.: K-contact metrics as Ricci solitons. Beitr. Algebra Geom. 53, 25–30 (2012)
Ghosh A., Sharma R., Cho J.T.: Contact metric manifolds with η-parallel torsion tensor. Ann. Glob. Anal. Geom. 34, 287–299 (2008)
Hamilton, R.S.: The Ricci flow on surfaces, mathematics and general relativity (Santa Cruz, CA, 1986), 237–262, Contemp. Math. 71, American Math. Soc., (1988)
He, C., Zhu, M.: Ricci solitons on Sasakian manifolds, arXiv: 1109.4407v1, 20th Sep (2011)
Koufogiorgos T.: On a class of contact Riemannian 3-manifolds. Results Math. 27, 51–62 (1995)
Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. Preprint (2002). http://arXiv:math.DG/02111159
Sharma R.: Certain results on K-contact and (k, μ)-contact manifolds. J. Geom. 89, 138–147 (2008)
Sharma R., Ghosh A.: Sasakian 3-metric as a Ricci soliton represents the Heisenberg group. Int. J. Geom. Methods Math. Phys. 8, 149–154 (2011)
Yano K.: Integral formulas in Riemannian geometry. Marcel Dekker, New York (1970)
Yano K., Kon M.: Structures on Manifolds, Series in Pure Mathematics 3. World Scientific Pub. Co., Singpore (1984)