Note on some restricted Stirling numbers of the second kind
Tài liệu tham khảo
Broder, 1984, The r-Stirling numbers, Discrete Math., 49, 241, 10.1016/0012-365X(84)90161-4
Dong, 2005
Duncan, 2009, Bell and Stirling numbers for graphs, J. Integer Seq., 12
Hardy, 1952
Karlin, 1968
Kurtz, 1972, A note on concavity properties of triangular arrays of numbers, J. Comb. Theory, Ser. A, 3, 135, 10.1016/0097-3165(72)90017-9
Liu, 2007, On the log-convexity of combinatorial sequences, Adv. Appl. Math., 39, 453, 10.1016/j.aam.2006.11.002
Maamra, 2014, The (r1,…,rp)-Bell polynomials, Integers, 14
Mihoubi, 2012, The (r1,…,rp)-Stirling numbers of the second kind, Integers, 12, 10.1515/integers-2012-0022
Sagan, 1992, Log concave sequences of symmetric functions and analogs of the Jacobi–Trudi determinants, Trans. Amer. Math. Soc., 329, 795, 10.1090/S0002-9947-1992-1066448-X
Sagan, 1992, Inductive proofs of q-log concavity, Discrete Math., 99, 298, 10.1016/0012-365X(92)90377-R
Wang, 2005, Polynomials with real zeros and Pólya frequency sequences, J. Comb. Theory, Ser. A, 109, 63, 10.1016/j.jcta.2004.07.008
Zhao, 2012, On log-concavity of a class of generalized Stirling numbers, Electron. J. Comb., 19
