Normalized local theta correspondence and the duality of inner product formulas

Springer Science and Business Media LLC - Tập 191 Số 1 - Trang 227-278 - 2012
Yannan Qiu1
1Department of Mathematics, Columbia University, New York, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

W. T. Gan, The Saito-Kurokawa space of PGSp4 and its transfer to inner forms, in Eisenstein Series and Applications, Progress in Mathematics, Vol. 258, Birkhäuser Boston, Boston, MA, 2008, pp. 87–123.

W. T. Gan and N. Gurevich, Restrictions of Saitio-Kurokawa representations, Contemporary Mathematics 488 (2009), 95–124.

W. T. Gan and A. Ichino, On endoscopy and the refined gross-prasad conjecture for (so 4,so 5), Journal of the Institute of Mathematics of Jussieu, to appear.

B. H. Gross, On the motive of a reductive group, Inventiones Mathematicae 130 (1997), 287–313.

B. H. Gross and W. T. Gan, Haar measure and the Artin conductor, Transactions of the American Mathematical Society 351 (1999), 1691–1704.

R. Howe, θ-series and invariant theory, in Automorphic Forms, Representations and LFunctions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proceedings of Symposia in Pure Mathematics XXXIII, American Mathematical Society, Providence, RI, 1979, pp. 275–285.

R. Howe, Transcending classical invariant theory, Journal of the American Mathematical Society 2 (1989), 535–552.

H. Jacquet and R. P. Langlands, Automorphic Forms on GL(2), Lecture Notes in Mathematics, Vol. 114, Springer-Verlag, Berlin, 1970.

S. S. Kudla, On the local theta correspondence, Inventiones Mathematicae 83 (1986), 229–255.

J.-S. Li, Nonvanishing theorems for the cohomology of certain arithmetic quotients, Journal für die Reine und Angewandte Mathematik 428 (1992), 177–217.

C. Moeglin, M.-F. Vignéras and J.-L. Waldspurger, Correspondances de Howe sur un corps p-adique, Lecture Notes in Mathematics, Vol. 1291, Springer-Verlag, Berlin, 1987.

Y. Qiu, Generalized formal degree, International Mathematics Research Notices, to appear.

S. Rallis, L-functions and the Oscillator Representation, Lecture Notes in Mathematics, Vol. 1245, Springer-Verlag, Berlin, 1987.

J.-L. Waldspurger, Correspondance de Shimura, Journal de Mathématiques Pures et Appliquées 59 (1980), 1–132.

J.-L. Waldspurger, Correspondances de Shimura et quaternions, Forum Mathematicum 3 (1991), 219–307.