Normality Criteria of Meromorphic Functions Sharing a Holomorphic Function

Da-Wei Meng1, Pei-Chu Hu2
1Department of Mathematics, Xidian University, Xi’an, People’s Republic of China
2Department of Mathematics, Shandong University, Jinan, People’s Republic of China

Tóm tắt

Take three integers $$m\ge 0,\,k\ge 1$$ , and $$n\ge 2$$ . Let $$a\ (\not \equiv 0)$$ be a holomorphic function in a domain $$D$$ of $$\mathbb {C}$$ such that multiplicities of zeros of $$a$$ are at most $$m$$ and divisible by $$n+1$$ . In this paper, we mainly obtain the following normality criterion: Let $${{{\fancyscript{F}}}}$$ be the family of meromorphic functions on $$D$$ such that multiplicities of zeros of each $$f\in {{\fancyscript{F}}}$$ are at least $$k+m$$ and such that multiplicities of poles of $$f$$ are at least $$m+1$$ . If each pair $$(f,g)$$ of $${{\fancyscript{F}}}$$ satisfies that $$f^{n}f^{(k)}$$ and $$g^{n}g^{(k)}$$ share $$a$$ (ignoring multiplicity), then $${{\fancyscript{F}}}$$ is normal.

Tài liệu tham khảo

Alotaibi, A.: On the zeros of \(af(f^{(k)})^{n-1}\) for \(n\ge 2\). Comput. Methods Funct. Theory 4(1), 227–235 (2004) Bergweiler, W., Eremenko, A.: On the singularities of the inverse to a meromorphic function of finite order. Rev. Mat. Iberoam. 11(2), 355–373 (1995) Chang, J., Fang, M.: Normality and shared functions of holomorphic functions and their derivatives. Mich. Math. J. 53(3), 625–645 (2005) Chang, J., Fang, M., Zalcman, L.: Normal families of holomorphic functions. Ill. J. Math. 48(1), 319–337 (2004) Chen, B., Chen, Z.: Meromorphic function sharing two sets with its difference operator. Bull. Malays. Math. Sci. Soc. (2) 35(3), 765–774 (2012) Chen, H.H., Fang, M.L.: The value distribution of \(f^{n}f^{\prime }\). Sci. China Ser. A 38(7), 789–798 (1995) Chen, H.H., Gu, Y.X.: Improvement of Marty’s criterion and its application. Sci. China Ser. A 36(6), 674–681 (1993) Clunie, J.: On integral and meromorphic functions. J. Lond. Math. Soc. 37, 17–27 (1962) Clunie, J.: On a result of Hayman. J. Lond. Math. Soc. 42, 389–392 (1967) Dou, J., Qi, X.-G., Yang, L.-Z.: Entire functions that share fixed-points. Bull. Malays. Math. Sci. Soc. (2) 34(2), 355–367 (2011) Drasin, D.: Normal families and the Nevanlinna theory. Acta Math. 122, 231–263 (1969) Gu, Y.X.: On normal families of meromorphic functions. Sci. Sin. Ser. A 4, 373–384 (1978) Ku, Y.: Sur les familles normales de fonctions méromorphes. Sci. Sin. 21(4), 431–445 (1978) Gu, Y.X.: A normal criterion of meromorphic families. Sci. Sin. 1, 267–274 (1979) Gu, Y.X., Pang, X.C., Fang, M.L.: Theory of Normal Families and Its Application. Science Press, Beijing (2007) Hayman, W.K.: Picard values of meromorphic functions and their derivatives. Ann. of Math. (2) 70, 9–42 (1959) Hayman, W.K.: Meromorphic Functions. Oxford Mathematical Monographs. Clarendon Press, Oxford (1964) Hayman, W.K.: Research Problems in Function Theory. The Athlone Press University of London, London (1967) Hennekemper, W.: Über die Werteverteilung von \({(f^{k+1})}^{(k)}\). Math. Z. 177(3), 375–380 (1981) Hu, P.-C., Meng, D.-W.: Normality criteria of meromorphic functions with multiple zeros. J. Math. Anal. Appl. 357(2), 323–329 (2009) Jiang, Y., Gao, Z.: Normal families of meromorphic functions sharing a holomorphic function and the converse of the Bloch principle. Acta Math. Sci. Ser. B Engl. Ed. 32(4), 1503–1512 (2012) Jiang, Y., Gao, Z.: Normal families of meromorphic functions sharing values or functions. J. Inequal. Appl. 1, 1–10 (2011) Kong, Y., Gan, H.: The Borel radius and the \(S\) radius of the K-quasimeromorphic mapping in the unit disc. Bull. Malays. Math. Sci. Soc. (2) 35(3), 819–827 (2012) Li, S.-Y., Xie, H.C.: On normal families of meromorphic functions. Acta Math. Sin. 29(4), 468–476 (1986) Li, X.-M., Yi, H.-X.: On uniqueness theorems of meromorphic functions concerning weighted sharing of three values. Bull. Malays. Math. Sci. Soc. (2) 33(1), 1–16 (2010) Li, X.-M., Gao, L.: Uniqueness results for a nonlinear differential polynomial. Bull. Malays. Math. Sci. Soc. (2) 35(3), 727–743 (2012) Li, Y., Gu, Y.: On normal families of meromorphic functions. J. Math. Anal. Appl. 354(2), 421–425 (2009) Liu, L.: On normal families of meromorphic functions. J. Math. Anal. Appl. 331(1), 177–183 (2007) Meng, D.-W., Hu, P.-C.: Normality criteria of meromorphic functions sharing one value. J. Math. Anal. Appl. 381(2), 724–731 (2011) Miranda, C.: Sur un nouveau critère de normalité pour les familles de fonctions holomorphes. Bull. Soc. Math. Fr. 63, 185–196 (1935) Mues, E.: Über ein problem von Hayman. Math. Z. 164(3), 239–259 (1979) Oshkin, I.B.: On a condition for the normality of families of holomorphic functions. Uspekhi Mat. Nauk 37(2(224)), 221–222 (1982) Pang, X.C.: Normality conditions for differential polynomials. Kexue Tongbao (Chin.) 33(22), 1690–1693 (1988) Pang, X.C.: Bloch’s principle and normal criterion. Sci. China Ser. A 32(7), 782–791 (1989) Pang, X.C.: On normal criterion of meromorphic functions. Sci. China Ser. A 33(5), 521–527 (1990) Pang, X., Zalcman, L.: On theorems of Hayman and Clunie. N. Z. J. Math. 28(1), 71–75 (1999) Qi, J., Qi, J.Ding, Yang, L.: Normality criteria for families of meromorphic function concerning shared values. Bull. Malays. Math. Sci. Soc. (2) 35(2), 449–457 (2012) Schiff, J.L.: Normal Families. Springer, New York (1993) Schwick, W.: Normality criteria for families of meromorphic functions. J. Anal. Math. 52, 241–289 (1989) Schwick, W.: Exceptional functions and normality. Bull. Lond. Math. Soc. 29(4), 425–432 (1997) Wang, J.P., Yi, H.X.: A fundamental inequality of the theory of meromorphic functions and its applications. Acta Math. Sin. (Chin. Ser.) 49(2), 443–450 (2006) Wang, Y.F., Fang, M.L.: The value distributions of meromorphic functions with multiple zeros. Acta Math. Sin. (Chin. Ser.) 41(4), 743–748 (1998) Xia, J., Xu, Y.: Normal families of meromorphic functions with multiple values. J. Math. Anal. Appl. 354(1), 387–393 (2009) Xia, J., Xu, Y.: Normality criterion concerning sharing functions II. Bull. Malays. Math. Sci. Soc. (2) 33(3), 479–486 (2010) Xu, H.-Y., Zhan, T.-S.: On the existence of \(T\)-direction and Nevanlinna direction of \(K\)-quasi-meromorphic mapping dealing with multiple values. Bull. Malays. Math. Sci. Soc. (2) 33(2), 281–294 (2010) Xu, Y., Chang, J.: Normality criteria and multiple values II. Ann. Polon. Math. 102(1), 91–99 (2011) Xue, G.F., Pang, X.C.: A criterion for normality of a family of meromorphic functions. J. East China Norm. Univ. Natur. Sci. Ed. 2(1), 15–22 (1988) Yang, C.C., Hu, P.C.: On the value distribution of \(ff^{(k)}\). Kodai Math. J. 19(2), 157–167 (1996) Yang, C.C., Yang, L., Wang, Y.F.: On the zeros of \(f\left(f^{(k)}\right)^n-a\). Chin. Sci. Bull. 38, 2125–2128 (1993) Yang, C.-C., Yi, H.-X.: Uniqueness Theory of Meromorphic Functions, Mathematics and its Applications, 557. Kluwer, Dordrecht (2003) Yang, L.: Normality for families of meromorphic functions. Sci. Sin. Ser. A 29(12), 1263–1274 (1986) Yang, L.: Value Distribution Theory, Translated and Revised from the 1982 Chinese Original. Springer, Berlin (1993) Yang, L., Yang, C.-C.: Angular distribution of values of \(ff^{\prime }\). Sci. China Ser. A 37(3), 284–294 (1994) Lo, Yang, Kuan-heo, Chang: Recherches sur la normalité des familles de fonctions analytiques à des valeurs multiples. I. Un nouveau critère et quelques applications. Sci. Sin. 14, 1258–1271 (1965) Zalcman, L.: A heuristic principle in complex function theory. Am. Math. Mon. 82(8), 813–817 (1975) Zalcman, L.: Normal families: new perspectives. Bull. Am. Math. Soc. (N.S.) 35(3), 215–230 (1998) Zhang, Q.: Normal families of meromorphic functions concerning shared values. J. Math. Anal. Appl. 338(1), 545–551 (2008) Zhang, Q.: Some normality criteria of meromorphic functions. Complex Var. Elliptic Equ. 53(8), 791–795 (2008) Zhang, W.-H.: Value distribution of meromorphic functions concerning differential polynomial. Bull. Malays. Math. Sci. Soc. (2) 28(2), 117–123 (2005) Zhang, Z.F., Song, G.D.: Chinese Ann. Math. Ser. A 19(2), 1998, pp. 275–282 translation in. Chinese J. Contemp. Math. 19(2), 233–243 (1998) Zhang, Z.L., Li, W.: Picard exceptional values for two classes of differential polynomials. Acta Math. Sin. 37(6), 828–835 (1994)