Norm optimization problem for linear operators in classical Banach spaces

Daniel Pellegrino1, Eduardo V. Teixeira2
1Departamento de Matemática, Universidade Federal da Paraíba, João Pessoa, Brazil
2Departamento de Matemática, Universidade Federal do Ceará, Fortaleza, Brazil

Tóm tắt

The main result of the paper shows that, for 1 < p < ∞ and 1 ≤ q < ∞, a linear operator T: ℓ p → ℓ q attains its norm if, and only if, there exists a not weakly null maximizing sequence for T (counterexamples can be easily constructed when p = 1). For 1 < p ≠ q < ∞, as a consequence of the previous result we show that any not weakly null maximizing sequence for a norm attaining operator T: ℓ p → ℓ q has a norm-convergent subsequence (and this result is sharp in the sense that it is not valid if p = q). We also investigate lineability of the sets of norm-attaining and non-norm attaining operators.

Tài liệu tham khảo

M. D. Acosta. Norm attaining operators into L 1(μ). Function spaces (Edwardsville, IL, 1998), 1–11, Contemp. Math., 232, Amer. Math. Soc., Providence, RI (1999). M. Acosta, A. Aizpuru, R. Aron and F. J. García-Pacheco. Functionals that do not attain their norm. Bull. Belg. Math. Soc. Simon Stevin, 14 (2007), 407–418. F. Albiac and N. Kalton. Topics in Banach space theory. Springer Verlag, New York (2006). R. Aron, V. Gurariy and J. Seoane-Sepúlveda. Lineability and spaceability of sets of functions on ℝ. Proc. Amer. Math. Soc., 133 (2005), 795–803. L. Bernal-González. Dense-lineability in spaces of continuous functions. Proc. Amer. Math. Soc., 136 (2008), 3163–3169. E. Bishop and R. R. Phelps. A proof that every Banach space is subreflexive. Bull. Amer. Math. Soc., 67 (1961), 97–98. J. Bourgain. On dentability and the Bishop-Phelps property. Israel J. Math., 28(4) (1977), 265–271. W. T. Gowers. Symmetric block bases of sequences with large average growth. Israel J. Math., 69(2) (1990), 129–151. R. C. James. Reflexivity and the sup of linear functionals. Israel J. Math., 13 (1972), 289–300. J. Johnson and J. Wolfe. Norm attaining operators. Studia Math., 65 (1979), 7–19. J. Lindenstrauss. On operators which attain their norm. Israel J. Math., 1 (1963), 139–148. J. Lindenstrauss and L. Tzafriri. Classical Banach spaces. I. Sequence spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92. Springer-Verlag, Berlin-New York (1977). D. Moreira and E. V. Teixeira. On the behavior of weak convergence under nonlinearities and applications. Proc. Amer. Math. Soc., 133 (2005), 1647–1656. H. R. Pitt. A note on bilinear forms. J. London Math. Soc., 11 (1936), 174–180.