Norm conservation for generalized kinetic population models with delay

Mathematical and Computer Modelling - Tập 35 - Trang 765-778 - 2002
M. Bodnar1
1Institute of Applied Mathematics and Mechanics Department of Mathematics, Computer Science and Mechanics Warsaw University ul. Banacha 2, 02-097 Warszawa, Poland

Tài liệu tham khảo

Arlotti, 2000, Kinetic equations modelling population dynamics, Transport Theory Statist. Phys., 29, 125, 10.1080/00411450008205864 Bellomo, 2000 Jäger, 1992, On the distribution of dominance in populations of social organisms, SIAM J. Appl. Math., 52, 1442, 10.1137/0152083 Mokhtar-Kharroubi, 1997 Lasota, 1994 Rudnicki, 2000, Markov operators: Applications to diffusion processes and population dynamics, Appl. Math., 27, 67 Lachowicz, 2001, Nonlocal bilinear equations, equilibrium solutions and diffusive limit, Math. Models Meth. Appl. Sci., 11, 1231, 10.1142/S0218202501001380 De Angelis, 2001, Math. Models Meth. Appl. Sci., 11, 1381, 10.1142/S0218202501001501 Bellomo, 2000, Modelling matematical problems related to tumor evolution ad its interaction with immune system, Mathl. Comput. Modelling, 32, 413, 10.1016/S0895-7177(00)00143-6 Lasota, 1999, An application of the Kantorovich-Rubinstein maximum principle in the theory of the Tjon-Wu equation, J. Dig. Eq., 159, 578, 10.1006/jdeq.1999.3674