Noradrenergic modulation determines respiratory network activity during temperature changes in the in vitro brainstem of bullfrogs

Respiratory Physiology & Neurobiology - Tập 258 - Trang 25-31 - 2018
Mauricio Vallejo1, Joseph M. Santin2, Lynn K. Hartzler1
1Wright State University, Department of Biological Sciences, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA
2University of Missouri- Columbia, Division of Biological Sciences, 105 Tucker Hall, Columbia, MO, 65211-7400, USA

Tài liệu tham khảo

Baghdadwala, 2015, Three brainstem areas involved in respiratory rhythm generation in bullfrogs, J. Physiol., 593, 2941, 10.1113/JP270380 Behrisch, 1969, Temperature and the regulation of enzyme activity in poikilotherms. Properties of rainbow-trout fructose diphosphatase, Biochem. J., 111, 287, 10.1042/bj1110287 Bícego-Nahas, 1999, Seasonal changes in the cardiorespiratory responses to hypercarbia and temperature in the bullfrog, Rana catesbeiana, Comp. Biochem. Physiol., Part A Mol. Integr. Physiol., 124, 221, 10.1016/S1095-6433(99)00119-1 Feder, 1985, Cutaneous gas exchange in vertebrates: design, patterns, control and implications, Biol. Rev., 10.1111/j.1469-185X.1985.tb00416.x Fournier, 2006, Noradrenergic modulation of respiratory motor output during tadpole development: role of adrenoceptors, J. Exp. Biol., 209, 3685, 10.1242/jeb.02418 Fournier, 2007, Developmental changes in central O2 chemoreflex in Rana catesbeiana: the role of noradrenergic modulation, J. Exp. Biol., 210, 3015, 10.1242/jeb.005983 Hilaire, 2004, Modulation of the respiratory rhythm generator by the pontine noradrenergic A5 and A6 groups in rodents, Respir. Physiol. Neurobiol., 143, 187, 10.1016/j.resp.2004.04.016 Hochachka, 1974, Temperature and pressure adaptation of the binding site of acetylcholinesterase, Biochem. J., 143, 535, 10.1042/bj1430535 Hodgkin, 1949, The effect of temperature on the electrical activity of the giant axon of the squid, J. Physiol. (Lond.), 109, 240, 10.1113/jphysiol.1949.sp004388 Jackson, 1978, Respiratory control in bullfrogs: cutaneous versus pulmonary response to selective CO2 exposure, J. Comp. Physiol., 129, 339, 10.1007/BF00686991 Jackson, 1974, The effects of temperature and carbon dioxide breathing on ventilation and acid-base status of turtles, Respir. Physiol., 20, 131, 10.1016/0034-5687(74)90102-9 Kinkead, 1994, Vagal input enhances responsiveness of respiratory discharge to central changes in pH/CO2 in bullfrogs, J. Appl. Physiol., 77, 2048, 10.1152/jappl.1994.77.4.2048 Kruhoeffer, 1987, Control of breathing in an amphibian Bufo paracnemis: effects of temperature and hypoxia, Respir. Physiol., 69, 267, 10.1016/0034-5687(87)90033-8 Mackenzie, 1978, The effect of temperature on cutaneous CO2 loss and conductance in the bullfrog, Respir. Physiol. Neurobiol., 32, 313, 10.1016/0034-5687(78)90119-6 Marder, 2015, How can motor systems retain performance over a wide temperature range? Lessons from the crustacean stomatogastric nervous system, J. Comp. Physiol. A, 201, 851, 10.1007/s00359-014-0975-2 Morales, 2002, Temperature and pH/CO2 modulate respiratory activity in the isolated brainstem of the bullfrog (Rana catesbeiana), Comp. Biochem. Physiol. Part A, 132, 477, 10.1016/S1095-6433(02)00093-4 Oliveira, 2016, α, J. Neurophysiol., 116, 1036, 10.1152/jn.00023.2016 Ovadia, 1996, Molecular characterization of immune derived proenkephalin mRNA and the involvement of the adrenergic system in its expression in rat lymphoid cells, J. Neuroimmunol., 68, 77, 10.1016/0165-5728(96)00071-9 Richter, 2014, Respiratory rhythm generation in vivo, Physiology, 29, 58, 10.1152/physiol.00035.2013 Robertson, 2012, Temperature and neuronal circuit function: compensation, tuning and tolerance, Curr. Opin. Neurobiol., 22, 724, 10.1016/j.conb.2012.01.008 Roemschied, 2014, Cell-intrinsic mechanisms of temperature compensation in a grasshopper sensory receptor neuron, eLife, 10.7554/eLife.02078 Romero, 2013, CB1 and CB2 cannabinoid receptor agonists induce peripheral antinociception by activation of the endogenous noradrenergic system, Anesth. Analg., 116, 463, 10.1213/ANE.0b013e3182707859 Santin, 2013, Respiratory signaling of locus coeruleus neurons during hypercapnic acidosis in the bullfrog, Lithobates catesbeianus, Respir. Physiol. Neurobiol., 185, 553, 10.1016/j.resp.2012.11.002 Santin, 2015, Activation state of the hyperpolarization-activated current modulates temperature-sensitivity of firing in locus coeruleus neurons from bullfrogs, Am. J. Physiol., 308, R1045 Santin, 2017, Activation of respiratory muscles does not occur during cold-submergence in bullfrogs, Lithobates catesbeianus, J. Exp. Biol., 220, 1181, 10.1242/jeb.153544 Santin, 2013, Temperature influences neuronal activity and CO2/pH sensitivity of locus coeruleus neurons in the bullfrog, Lithobates catesbeianus, Am. J. Physiol., 305, R1451 Smith, 2013, Brainstem respiratory networks: building blocks and microcircuits, Trends Neurosci. Educ., 10.1016/j.tins.2012.11.004 Städele, 2015, Neuromodulation to the rescue: compensation of temperature-induced breakdown of rhythmic motor patterns via extrinsic neuromodulatory, PLOS Biol. Input., 10.1371/journal.pbio.1002265 Stinner, 1982, Ventilation, gas exchange and blood gases in the snake, Pituophis melanoleucus, Respir. Physiol. Neurobiol., 47, 279, 10.1016/0034-5687(82)90058-5 Tang, 2010, Precise temperature compensation of phase in a rhythmic motor pattern, PLoS Biol., 10.1371/journal.pbio.1000469 Tattersal, 2006 Vauquelin, 1990, Identification of α2 adrenergic receptors in human frontal cortex membranes by binding of [3H]RX 821002, the 2-methoxy analog of [3H]idazoxan, Neurochem. Int., 10.1016/0197-0186(90)90041-Q