Giải pháp vô hướng không bằng không cho một lớp hệ thống elliptic với điều kiện biên phi địa phương trên miền hình nhẫn

Gennaro Infante1, Paolamaria Pietramala1
1Dipartimento di Matematica e Informatica, Università della Calabria, Cosenza, Italy

Tóm tắt

Chúng tôi cung cấp những kết quả mới về sự tồn tại, không tồn tại, định vị và đa thức của các giải pháp không tầm thường cho các hệ phương trình tích Hammerstein. Một số tiêu chí liên quan đến việc so sánh với bán kính quang phổ của một số toán tử tuyến tính liên quan. Chúng tôi áp dụng các kết quả của mình để chứng minh sự tồn tại của nhiều giải pháp vô hướng khác nhau cho một số hệ thống bài toán giá trị biên elliptic dưới điều kiện biên không địa phương. Phương pháp của chúng tôi là phương pháp topo học và dựa vào chỉ số điểm cố định cổ điển. Chúng tôi trình bày một ví dụ để minh họa lý thuyết của mình.

Từ khóa

#Hammerstein integral equations #elliptic boundary value problems #nonlocal boundary conditions #topological methods #fixed point index

Tài liệu tham khảo

Agarwal, R.P., O’Regan, D., Wong, P.J.Y.: Constant-Sign Solutions of Systems of Integral Equations, Springer, Cham (2013) Amann H.: Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev. 18, 620–709 (1976) Amster P., Maurette M.: An elliptic singular system with nonlocal boundary conditions. Nonlinear Anal. 75, 5815–5823 (2012) Beals R.: Nonlocal elliptic boundary value problems. Bull. Am. Math. Soc. 70, 693–696 (1964) Bitsadze A.V., Samarskiĭ A.A.: Some elementary generalizations of linear elliptic boundary value problems (Russian). Anal. Dokl. Akad. Nauk SSSR 185, 739–740 (1969) Browder F.: Non-local elliptic boundary value problems. Am. J. Math. 86, 735–750 (1964) Cabada, A., Infante, G., Tojo, F.A.F.: Nonzero solutions of perturbed Hammerstein integral equations with deviated arguments and applications. Topol. Methods Nonlinear Anal. (to appear, 2015) Cheng X., Zhang Z.: Existence of positive solutions to systems of nonlinear integral or differential equations. Topol. Methods Nonlinear Anal. 34, 267–277 (2009) Cheng X., Zhong C.: Existence of positive solutions for a second-order ordinary differential system. J. Math. Anal. Appl. 312, 14–23 (2005) Conti R.: Recent trends in the theory of boundary value problems for ordinary differential equations. Boll. Un. Mat. Ital. 22, 135–178 (1967) Dunninger D.R., Wang H.: Existence and multiplicity of positive solutions for elliptic systems. Nonlinear Anal. 29, 1051–1060 (1997) Dunninger D.R., Wang H.: Multiplicity of positive radial solutions for an elliptic system on an annulus. Nonlinear Anal. 42, 803–811 (2000) do Ó J.M., Lorca S., Ubilla P.: Local superlinearity for elliptic systems involving parameters. J. Differ. Equ. 211, 1–19 (2005) do Ó J.M., Lorca S., Ubilla P.: Three positive solutions for a class of elliptic systems in annular domains. Proc. Edinb. Math. Soc. 2(48), 365–373 (2005) do Ó J.M., Sánchez J., Lorca S., Ubilla P.: Positive solutions for a class of multiparameter ordinary elliptic systems. J. Math. Anal. Appl. 332, 1249–1266 (2007) Franco D., Infante G., O’Regan D.: Nontrivial solutions in abstract cones for Hammerstein integral systems. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 14, 837–850 (2007) Goodrich C.S.: Nonlocal systems of BVPs with asymptotically superlinear boundary conditions. Comment. Math. Univ. Carolin. 53, 79–97 (2012) Goodrich C.S.: Nonlocal systems of BVPs with asymptotically sublinear boundary conditions. Appl. Anal. Discrete Math. 6, 174–193 (2012) Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones. Academic Press, Boston (1988) Henderson J., Luca R.: Existence and multiplicity for positive solutions of a system of higher-order multi-point boundary value problems. NoDEA Nonlinear Differ. Equ. Appl. 20, 1035–1054 (2013) Henderson J., Luca R.: Positive solutions for systems of second-order integral boundary value problems. Electron. J. Qual. Theory Differ. Equ. 70, 21 (2013) Infante G.: Eigenvalues of some non-local boundary-value problems. Proc. Edinb. Math. Soc. 46, 75–86 (2003) Infante G., Pietramala P.: Eigenvalues and non-negative solutions of a system with nonlocal BCs. Nonlinear Stud. 16, 187–196 (2009) Infante, G., Pietramala, P.: A cantilever equation with nonlinear boundary conditions Electron. J. Qual. Theory Differ. Equ. Spec. Ed. I, 15, 1–14 (2009) Infante G., Pietramala P.: Perturbed Hammerstein integral inclusions with solutions that change sign Comment. Math. Univ. Carolin. 50, 591–605 (2009) Infante G., Pietramala P.: Existence and multiplicity of non-negative solutions for systems of perturbed Hammerstein integral equations. Nonlinear Anal. 71, 1301–1310 (2009) Infante, G., Pietramala, P., Tojo, F.A.F.: Nontrivial solutions of local and non-local Neumann boundary value problems. Proc. R. Soc. Edinb. Sect. A. (to appear) Infante G., Webb J.R.L.: Nonzero solutions of Hammerstein integral equations with discontinuous kernels. J. Math. Anal. Appl. 272, 30–42 (2002) Infante G., Webb J.R.L.: Three point boundary value problems with solutions that change sign. J. Integral Equ. Appl. 15, 37–57 (2003) Karakostas G.L.: Existence of solutions for an n-dimensional operator equation and applications to BVPs. Electron. J. Differ. Equ. 71, 17 (2014) Krasnosel’skiĭ M.A., Zabreĭko P.P.: Geometrical Methods of Nonlinear Analysis. Springer, Berlin (1984) Lan K.Q.: Multiple positive solutions of Hammerstein integral equations with singularities. Differ. Equ. Dyn. Syst. 8, 175–195 (2000) Lan K.Q.: Multiple positive solutions of semilinear differential equations with singularities. J. Lond. Math. Soc. 63, 690–704 (2001) Lan K.Q., Lin W.: Multiple positive solutions of systems of Hammerstein integral equations with applications to fractional differential equations. J. Lond. Math. Soc. 83, 449–469 (2011) Lan K.Q., Lin W.: Positive solutions of systems of singular Hammerstein integral equations with applications to semilinear elliptic equations in annuli. Nonlinear Anal. 74, 7184–7197 (2011) Lan K.Q., Webb J.R.L.: Positive solutions of semilinear differential equations with singularities. J. Differ. Equ. 148, 407–421 (1998) Lee Y.-K.: Multiplicity of positive radial solutions for multiparameter semilinear elliptic systems on an annulus. J. Differ. Equ. 174, 420–441 (2001) Ma R.: Existence of positive radial solutions for elliptic systems. J. Math. Anal. Appl. 201, 375–386 (1996) Ma R.: A survey on nonlocal boundary value problems. Appl. Math. E-Notes 7, 257–279 (2001) Ntouyas, S.K.: Nonlocal initial and boundary value problems: a survey. Handbook of differential equations: ordinary differential equations. vol. II, pp. 461–557, Elsevier B. V., Amsterdam (2005) Picone M.: Su un problema al contorno nelle equazioni differenziali lineari ordinarie del secondo ordine. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 10, 1–95 (1908) Pietramala, P.: A note on a beam equation with nonlinear boundary conditions. Bound. Value Probl. Art. ID 376782 (2011) Precup, R.: Componentwise compression–expansion conditions for systems of nonlinear operator equations and applications. Mathematical models in engineering, biology and medicine. In: AIP Conference Proceedings, vol. 1124, pp. 284–293. American Institute of Physics, Melville (2009) Precup R.: Existence, localization and multiplicity results for positive radial solutions of semilinear elliptic systems. J. Math. Anal. Appl. 352, 48–56 (2009) Schechter M.: Nonlocal elliptic boundary value problems. Ann. Scuola Norm. Sup. Pisa. 20, 421–441 (1966) Skubachevskiĭ A.L.: Nonclassical boundary value problems. I. J. Math. Sci. (N. Y.). 155, 199–334 (2008) Skubachevskiĭ A.L.: Nonclassical boundary value problems. II. J. Math. Sci. (N. Y.). 166, 377–561 (2010) Štikonas A.: A survey on stationary problems, Green’s functions and spectrum of Sturm-Liouville problem with nonlocal boundary conditions. Nonlinear Anal. Model. Control 19, 301–334 (2014) Wang H.: On the existence of positive solutions for semilinear elliptic equations in the annulus. J. Differ. Equ. 109, 1–7 (1994) Wang Y.: Solutions to nonlinear elliptic equations with a nonlocal boundary condition. Electron. J. Differ. Equ. 05, 16 (2002) Webb J.R.L.: Positive solutions of some three point boundary value problems via fixed point index theory. Nonlinear Anal. 47, 4319–4332 (2001) Webb, J.R.L.: Multiple positive solutions of some nonlinear heat flow problems. Discrete Contin. Dyn. Syst. Suppl. 895–903 (2005) Webb J.R.L.: Optimal constants in a nonlocal boundary value problem. Nonlinear Anal. 63, 672–685 (2005) Webb J.R.L.: Solutions of nonlinear equations in cones and positive linear operators. J. Lond. Math. Soc. 82, 420–436 (2010) Webb J.R.L.: A class of positive linear operators and applications to nonlinear boundary value problems. Topol. Methods Nonlinear Anal. 39, 221–242 (2012) Webb J.R.L., Infante G.: Positive solutions of nonlocal boundary value problems: a unified approach. J. Lond. Math. Soc. 74, 673–693 (2006) Webb J.R.L., Infante G.: Nonlocal boundary value problems of arbitrary order. J. Lond. Math. Soc. 79, 238–258 (2009) Webb J.R.L., Lan K.Q.: Eigenvalue criteria for existence of multiple positive solutions of nonlinear boundary value problems of local and nonlocal type. Topol. Methods Nonlinear Anal. 27, 91–115 (2006) Whyburn W.M.: Differential equations with general boundary conditions. Bull. Am. Math. Soc. 48, 692–704 (1942) Yang Z.: Positive solutions to a system of second-order nonlocal boundary value problems. Nonlinear Anal. 62, 1251–1265 (2005) Yang Z.: Positive solutions for a system of nonlinear Hammerstein integral equations and applications. Appl. Math. Comput. 218, 11138–11150 (2012) Yang Z., Zhang Z.: Positive solutions for a system of nonlinear singular Hammerstein integral equations via nonnegative matrices and applications. Positivity 16, 783–800 (2012) Ye H., Ke Y.: A p-Laplace equation with nonlocal boundary condition in a perforated-like domain. Bull. Belg. Math. Soc. Simon Stevin 20, 895–908 (2013)