Nonuniform exponential dichotomies and Fredholm operators for flows
Tóm tắt
For the flow determined by a nonautonomous linear differential equation, we characterize the existence of a strong nonuniform exponential dichotomy in terms of the Fredholm property of a certain linear operator. We consider both cases of one-sided and two-sided exponential dichotomies. Moreover, we use the characterizations to establish the robustness of the notion of a strong nonuniform exponential dichotomy in a simple manner.
Tài liệu tham khảo
Barreira, L., Dragičević, D., Valls, C.: From one-sided dichotomies to two-sided dichotomies. Discrete Contin. Dyn. Syst. 35, 2817–2844 (2015)
Barreira, L., Dragičević, D., Valls, C.: Admissibility on the half line for evolution families. J. Anal. Math. (to appear)
Barreira, L., Pesin, Y.: Nonuniform Hyperbolicity, Encyclopedia of Mathematics and its Applications 115. Cambridge University Press, Cambridge (2007)
Barreira, L., Valls, C.: Stability of Nonautonomous Differential Equations. Lecture Notes in Mathematics 1926. Springer, Berlin (2008)
Barreira, L., Valls, C.: Strong exponential dichotomies via bounded solutions, preprint
Blázquez, C.: Transverse homoclinic orbits in periodically perturbed parabolic equations. Nonlinear Anal. 10, 1277–1291 (1986)
Chow, S.-N., Leiva, H.: Unbounded perturbation of the exponential dichotomy for evolution equations. J. Differ. Equ. 129, 509–531 (1996)
Coppel, W.: Dichotomies and reducibility. J. Differ. Equ. 3, 500–521 (1967)
Dalec’kiĭ, J., Kreĭn, M.: Stability of Solutions of Differential Equations in Banach Space. Translations of Mathematical Monographs 43. American Mathematical Society, Providence, RI (1974)
Lin, X.-B.: Exponential dichotomies and homoclinic orbits in functional-differential equations. J. Differ. Equ. 63, 227–254 (1986)
Massera, J., Schäffer, J.: Linear differential equations and functional analysis. I. Ann. Math. (2) 67, 517–573 (1958)
Naulin, R., Pinto, M.: Admissible perturbations of exponential dichotomy roughness. Nonlinear Anal. 31, 559–571 (1998)
Palmer, K.: Exponential dichotomies and transversal homoclinic points. J. Differ. Equ. 55, 225–256 (1984)
Palmer, K.: Exponential dichotomies and Fredholm operators. Proc. Am. Math. Soc. 104, 149–156 (1988)
Pliss, V., Sell, G.: Robustness of exponential dichotomies in infinite-dimensional dynamical systems. J. Dyn. Differ. Equ. 11, 471–513 (1999)
Popescu, L.: Exponential dichotomy roughness on Banach spaces. J. Math. Anal. Appl. 314, 436–454 (2006)
Rodrigues, H., Ruas-Filho, J.: Evolution equations: dichotomies and the Fredholm alternative for bounded solutions. J. Differ. Equ. 119, 263–283 (1995)
Rodrigues, H., Silveira, M.: Properties of bounded solutions of linear and nonlinear evolution equations: homoclinics of a beam equation. J. Differ. Equ. 70, 403–440 (1987)
Sacker, R., Sell, G.: Dichotomies for linear evolutionary equations in Banach spaces. J. Differ. Equ. 113, 17–67 (1994)
Zeng, W.: Transversality of homoclinic orbits and exponential dichotomies for parabolic equations. J. Math. Anal. Appl. 216, 466–480 (1997)
Zhang, W.: The Fredholm alternative and exponential dichotomies for parabolic equations. J. Math. Anal. Appl. 191, 180–201 (1985)