Nonuniform exponential dichotomies and Fredholm operators for flows

Aequationes mathematicae - Tập 91 - Trang 301-316 - 2017
Luis Barreira1, Davor Dragičević2, Claudia Valls1
1Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
2School of Mathematics and Statistics, University of New South Wales, Sydney, Australia

Tóm tắt

For the flow determined by a nonautonomous linear differential equation, we characterize the existence of a strong nonuniform exponential dichotomy in terms of the Fredholm property of a certain linear operator. We consider both cases of one-sided and two-sided exponential dichotomies. Moreover, we use the characterizations to establish the robustness of the notion of a strong nonuniform exponential dichotomy in a simple manner.

Tài liệu tham khảo

Barreira, L., Dragičević, D., Valls, C.: From one-sided dichotomies to two-sided dichotomies. Discrete Contin. Dyn. Syst. 35, 2817–2844 (2015) Barreira, L., Dragičević, D., Valls, C.: Admissibility on the half line for evolution families. J. Anal. Math. (to appear) Barreira, L., Pesin, Y.: Nonuniform Hyperbolicity, Encyclopedia of Mathematics and its Applications 115. Cambridge University Press, Cambridge (2007) Barreira, L., Valls, C.: Stability of Nonautonomous Differential Equations. Lecture Notes in Mathematics 1926. Springer, Berlin (2008) Barreira, L., Valls, C.: Strong exponential dichotomies via bounded solutions, preprint Blázquez, C.: Transverse homoclinic orbits in periodically perturbed parabolic equations. Nonlinear Anal. 10, 1277–1291 (1986) Chow, S.-N., Leiva, H.: Unbounded perturbation of the exponential dichotomy for evolution equations. J. Differ. Equ. 129, 509–531 (1996) Coppel, W.: Dichotomies and reducibility. J. Differ. Equ. 3, 500–521 (1967) Dalec’kiĭ, J., Kreĭn, M.: Stability of Solutions of Differential Equations in Banach Space. Translations of Mathematical Monographs 43. American Mathematical Society, Providence, RI (1974) Lin, X.-B.: Exponential dichotomies and homoclinic orbits in functional-differential equations. J. Differ. Equ. 63, 227–254 (1986) Massera, J., Schäffer, J.: Linear differential equations and functional analysis. I. Ann. Math. (2) 67, 517–573 (1958) Naulin, R., Pinto, M.: Admissible perturbations of exponential dichotomy roughness. Nonlinear Anal. 31, 559–571 (1998) Palmer, K.: Exponential dichotomies and transversal homoclinic points. J. Differ. Equ. 55, 225–256 (1984) Palmer, K.: Exponential dichotomies and Fredholm operators. Proc. Am. Math. Soc. 104, 149–156 (1988) Pliss, V., Sell, G.: Robustness of exponential dichotomies in infinite-dimensional dynamical systems. J. Dyn. Differ. Equ. 11, 471–513 (1999) Popescu, L.: Exponential dichotomy roughness on Banach spaces. J. Math. Anal. Appl. 314, 436–454 (2006) Rodrigues, H., Ruas-Filho, J.: Evolution equations: dichotomies and the Fredholm alternative for bounded solutions. J. Differ. Equ. 119, 263–283 (1995) Rodrigues, H., Silveira, M.: Properties of bounded solutions of linear and nonlinear evolution equations: homoclinics of a beam equation. J. Differ. Equ. 70, 403–440 (1987) Sacker, R., Sell, G.: Dichotomies for linear evolutionary equations in Banach spaces. J. Differ. Equ. 113, 17–67 (1994) Zeng, W.: Transversality of homoclinic orbits and exponential dichotomies for parabolic equations. J. Math. Anal. Appl. 216, 466–480 (1997) Zhang, W.: The Fredholm alternative and exponential dichotomies for parabolic equations. J. Math. Anal. Appl. 191, 180–201 (1985)