Các sóng biortogonal không đồng nhất trên nửa đường thẳng dương thông qua biến đổi Walsh Fourier

Journal of the Egyptian Mathematical Society - Tập 29 - Trang 1-17 - 2021
Owais Ahmad1, Neyaz A. Sheikh1, Mobin Ahmad2
1Department of Mathematics, National Institute of Technology, Srinagar, India
2Department of Mathematics, Faculty of Science, Jazan University, Jazan, Saudi Arabia

Tóm tắt

Trong bài viết này, chúng tôi giới thiệu khái niệm về sóng biortogonal không đồng nhất trên nửa đường thẳng dương. Chúng tôi trước tiên thiết lập các đặc trưng cho các hình chiếu của một hàm đơn lẻ để tạo thành các cơ sở Riesz cho bề mặt không gian con đóng của chúng. Chúng tôi cung cấp đặc trưng đầy đủ cho sự biortogonal của các hình chiếu của các hàm tỉ lệ của hai phân tích đa quy mô không đồng nhất và các gia đình sóng biortogonal liên quan trong $$L^2({\mathbb {R}}^+)$$. Hơn nữa, dưới các giả định nhẹ về các hàm tỉ lệ và các sóng tương ứng liên quan đến phân tích đa quy mô không đồng nhất, chúng tôi cho thấy rằng các sóng có thể tạo ra các cơ sở Riesz.

Từ khóa

#sóng biortogonal #phân tích đa quy mô không đồng nhất #cơ sở Riesz #biến đổi Walsh Fourier

Tài liệu tham khảo

Bownik, M., Garrigos, G.: Biorthogonal wavelets, MRA’s and shift-invariant spaces. Studia Math. 160, 231–248 (2004) Cohen, A., Daubechies, I., Feauveau, J.C.: Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. 45, 485–560 (1992) Chui, C.K., Wang, J.Z.: On compactly supported spline wavelets and a duality principle. Trans. Amer. Math. Soc. 330(2), 903–915 (1992) Karoui, A., Vaillancourt, R.: Families of Biorthogonal Wavelets. Comput. Math. Applic. 28(4), 25–39 (1994) Gabardo, J.P., Nashed, M.: Nonuniform multiresolution analyses and spectral pairs. J. Funct. Anal. 158, 209–241 (1998) Shah, F., Abdullah, A.: Nonuniform multiresolution analysis on local fields of positive characteristic. Complex Anal. Opert. Theory. 9, 1589–1608 (2015) Farkov, Y.A., Maksimov, A.Y., Stroganov, S.A.: On biorthogonal wavelets related to the Walsh functions. Int. J. Wavelets Multiresolut. Inf. Process. 9(3), 485–499 (2011) Meenakshi, Manchanda, P., Siddiqi, A.H.: Wavelets associated with nonuniform multiresolution analysis on positive half-line. Int. J. Wavelets Multiresolut. Inf. Process. 10(2), 1250018 (2012) Shah, F.A., Ahmad, O., Sheikh, N.A.: Some new inequalities for wavelet frames on local fields. Anal. Theory Appl. 33(2), 134–148 (2017) Ahmad, O., Sheikh, N.A., Ali, M.A.: Nonuniform nonhomogeneous dual wavelet frames in Sobolev spaces in \(L^2({\mathbb{K}})\). Afrika Math. (2020). https://doi.org/10.1007/s13370-020-00786-1 Ahmad, O., Sheikh, N.A.: On Characterization of nonuniform tight wavelet frames on local fields. Anal. Theory Appl. 34, 135–146 (2018) Ahmad, O., Ahmad, N.: Construction of nonuniform wavelet frames on non-archimedean fields. Math. Phy. Anal. Geometry 23(47) (2020) Ahmad, O., Sheikh, N.A., Nisar, K.S., Shah, F.A.: Biorthogonal wavelets on spectrum. Math. Methods Appl. Sci. https://doi.org/10.1002/mma.7046 (2021) Ahmad, O.: Nonuniform periodic wavelet frames on non-archimedean fields. Annales Universitatis Mariae Curie-Sklodowska, sectio A - Mathematica. https://doi.org/10.17951/a.2020.74.2.1-17(2020) Ahmad, O., Ahmad, N.: Nonuniform \(p\)-tight wavelet frames on positive half line. TWMS J. Appl. Eng. Math. (To appear) Ahmad, O., Ahmad, N.: Explicit construction of tight nonuniform framelet packets on local fields. Oper. Matric. 15(1), 131–149 (2021) Ahmad, O., Bhat, M.Y., Sheikh, N.A.: Construction of Parseval Framelets Associated with GMRA on local fields of positive characteristic. Numer. Funct. Anal. Optim. (2021). https://doi.org/10.1080/01630563.2021.1878370 Shah, F.A., Ahmad, O.: Wave packet systems on local fields. J. Geom. Phys. 120, 5–18 (2017) Shah, F.A., Ahmad, O., Jorgenson, P.E.: Fractional wave packet frames in \(L^2({\mathbb{R}})\). J. Math. Phys. 59, 073509 (2018). https://doi.org/10.1063/1.5047649 Shah, F.A., Ahmad, O., Rahimi, A.: Frames associated with shift invariant spaces on local fields. Filomat 32(9), 3097–3110 (2018) Ahmad, O., Shah, F.A., Sheikh, N.A.: Gabor frames on non-Archimedean fields. Int. J. Geom. Methods Mod. Phys. 15, 1850079 (2018) Agarwal, P., Deniz, S., Jain, S., Alderremy, A.A.: Aly Shaban, A new analysis of a partial differential equation arising in biology and population genetics via semi analytical techniques. Physica A: Stat. Mech. Appl. 542, 122769 (2020) Saad, K.M., Iyiola, O.S., Agarwal, P.: An effective homotopy analysis method to solve the cubic isothermal auto-catalytic chemical system. AIMS Math. 3(1), 183–194 (2018) Chu, Y.M., Shah, N.A., Agarwal, P., Chung, J.D.: Analysis of fractional multi-dimensional Navier-Stokes equation. Adv. Differ. Equ. 1, 1–18 (2021) Abd-Elhameed, W.M., Doha, E,H., Youssri Y.H.: New spectral second kind Chebyshev wavelets algorithm for solving linear and nonlinear second-order differential equations involving singular and Bratu type equations. Abst. Appl. Anal. Article ID 715756 (2013) Abd-Elhameed, W.M., Doha, E,H., Youssri Y.H.: New wavelets collocation method for solving second-order multipoint boundary value problems using Chebyshev polynomials of third and fourth kinds. Abst. Appl. Anal. Article ID 542839 (2013) Abd-Elhameed, W.M., Youssri Y.H.: New ultraspherical wavelets spectral solutions for fractional Riccati differential equations. Abst. Appl. Anal. Article ID 626275 (2014) Abd-Elhameed, W.M., Youssri Y.H., Doha, E.H.: Ultraspherical wavelets method for solving lane-emden type equations. Roman. J. Phys. 60(9–10), 1298–1314 (2015) Abd-Elhameed, W.M., Youssri Y.H., Doha, E,H.: Accurate spectral solutions of first-and second-order initial value problems by the ultraspherical wavelets-Gauss collocation method. Appl. Appl. Math. 10(2), 835–851 (2015) Doha, E,H., Abd-Elhameed, W.M., Youssri Y.H.: New ultraspherical wavelets collocation method for solving 2nth-order initial and boundary value problems. J. Egypt. Math. Soc. 24(2), 319–327 (2016) Golubov, B.I., Efimov, A.V., Skvortsov, V.A.: Walsh Series and Transforms: Theory and Applications. Kluwer, Dordrecht (1991) Schipp, F., Wade, W.R., Simon, P.: Walsh Series: An Introduction to Dyadic Harmonic Analysis. Adam Hilger, Bristol and New York (1990) Restrepo, J.E., Piedrahita, A., Agarwal, P.: Multidimensional Fourier transform and fractional derivative. Proc. Jangjeon Math. Soc. 22(2), 269–279 (2019) Ruzhansky, M., Cho, Y.J., Agarwal, P., Area, I.: Advances in Real and Complex Analysis with Applications