Nonstationary phase boundary estimation in electrical impedance tomography using unscented Kalman filter
Tài liệu tham khảo
Butler, 2000, Inverse method for imaging a free surface using electrical impedance tomography, Chem. Eng. Sci., 55, 1193, 10.1016/S0009-2509(99)00410-8
Chung, 2005, Electrical impedance tomography using level set representation and total variational regularization, J. Comput. Phys., 205, 357, 10.1016/j.jcp.2004.11.022
Fairuzov, 2000, Numerical simulation of transient flow of two immiscible liquids in pipeline, AIChE J., 46, 1332, 10.1002/aic.690460707
Gisser, 1988, Theory and performance of adaptive current tomography system, Clin. Phys. Hysiol. Meas., 9, 35, 10.1088/0143-0815/9/4A/007
Gladden, 1996, Application of nuclear magnetic resonance imaging in process engineering, Meas. Sci. Technol., 7, 423, 10.1088/0957-0233/7/3/026
Han, 1999, A shape decomposition technique in electrical impedance tomography, J. Comput. Phys., 155, 75, 10.1006/jcph.1999.6330
Holand, 1995
Isaacson, 1986, Distinguishability of conductivities by electric current computed tomography, IEEE Trans. Medical Imaging, M1-5, 91, 10.1109/TMI.1986.4307752
Jones, 1993, Impedance imaging relative to gas–liquid systems, Nucl. Eng. Des., 141, 159, 10.1016/0029-5493(93)90100-N
S.J. Julier, J.K. Uhlmann, A New Extension of the Kalman Filter to nonlinear Systems, in: Proc. of AeroSense: The 11th International Symposium on Aerospace/Defense Sensing, Simulation and Controls, Multi Sensor Fusion, Tracking and Resource Management II, SPIE.
Julier, 2004, Unscented filtering and nonlinear estimation, Proc. IEEE, 92, 401, 10.1109/JPROC.2003.823141
Jeon, 2005, Electrical impedance imaging of binary mixtures with boundary estimation approach based on multilayer neural network, IEEE Sensors J., 5, 313, 10.1109/JSEN.2004.841868
Kim, 2001, Image reconstruction in time-varying electrical impedance tomography based on the extended Kalman filter, Meas. Sci. Technol., 12, 1, 10.1088/0957-0233/12/8/307
Kim, 2004, Nonstationary electrical impedance tomography with the IMM scheme, Meas. Sci. Technol., 15, 2113, 10.1088/0957-0233/15/10/022
Kim, 2005, Improvement of impedance imaging for two-phase systems with boundary estimation approach in electrical impedance tomography, Canad. J. Chem. Eng., 83, 55, 10.1002/cjce.5450830110
Kim, 2004, Dynamic electrical impedance imaging with the interacting multiple model scheme, Physiol. Meas., 26, S217, 10.1088/0967-3334/26/2/021
Kim, 2004, Estimation of phase boundaries in two-phase systems by electrical impedance tomography technique, J. Ind. Eng. Chem., 10, 710
Kim, 2007, Nonstationary phase boundary estimation in electrical impedance tomography based on the interacting multiple model scheme, Meas. Sci. Technol., 18, 62, 10.1088/0957-0233/18/1/008
Kim, 2006, Phase boundary estimation in electrical resistance tomography with weighted multilayer neural networks, IEEE Trans. Magnet., 42, 1191, 10.1109/TMAG.2006.871671
Kim, 2006, Estimation of phase boundary by front points method in electrical impedance tomography, Inverse Prob. Sci. Eng., 14, 455, 10.1080/17415970600573569
Kim, 2006, Phase boundary estimation in electrical resistance tomography with weighted multi-layered neural networks and front point approach, Meas. Sci. Technol., 17, 2731, 10.1088/0957-0233/17/10/027
Kim, 2007, Moving interfacial boundary estimation in stratified flow of two immiscible liquids using electrical resistance tomography, Meas. Sci. Technol., 18, 1257, 10.1088/0957-0233/18/5/012
Kolehmainen, 1999, Recovery of region boundaries of piecewise constant coefficients of elliptic PDE from boundary data, Inverse Prob., 15, 1375, 10.1088/0266-5611/15/5/318
Kortschak, 2005, A FEM-BEM approach using level-sets in electrical capacitance tomography, Compel, 24, 591, 10.1108/03321640510586204
Lionheart, 2004, EIT reconstruction algorithms: pitfalls, challenges and recent developments, Physiol. Meas., 23, 125, 10.1088/0967-3334/25/1/021
Newell, 1988, An electric current tomograph, IEEE Trans. Biomed. Eng., 35, 823, 10.1109/10.7289
Perry, 1997
Shollenberger, 1997, Gamma-densitometry tomography of gas holdup spatial distribution and industrial-scale bubble column, Chem. Eng. Sci., 52, 2037, 10.1016/S0009-2509(97)00032-8
Tossavainen, 2006, Free-surface and admittivity estimation in electrical impedance tomography, Int. J. Numer. Methods Eng., 66, 1991, 10.1002/nme.1603
Tossavainen, 2006, Tracking of moving interfaces in sedimentation processes using electrical impedance tomography, Chem. Eng. J., 61, 7717, 10.1016/j.ces.2006.09.010
Tossavainen, 2004, Estimating shape and free surfaces with electrical impedance tomography, Meas. Sci. Technol., 15, 1402, 10.1088/0957-0233/15/7/024
Tossavainen, 2007, A three-dimensional shape estimation approach for tracking of phase interfaces in sedimentation process using electrical impedance tomography, Meas. Sci. Technol., 18, 1413, 10.1088/0957-0233/18/5/029
R. Van der Merwe, E.R. Wan, The square-root unscented Kalman filter for state and parameter estimation, in: Proceedings of 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, UT, USA, 2001.
M. Vauhkonen, Electrical Impedance Tomography and Prior Information, Ph.D. Thesis, University of Kuopio, Finland, 1997.
M. Vauhkonen, P.A. Karjalainen, J.P. Kaipio, A Kalman filter approach applied to the tracking of fast movements of organ boundaries in electrical impedance tomography, in: Proceedings of 20th Annual International Conference, IEEE, 1998.
Vauhkonen, 2001, A MATLAB package for the EIDORS project to reconstruct two-dimensional EIT images, Physiol. Meas., 22, 107, 10.1088/0967-3334/22/1/314
Xu, 1997, Application of ultrasonic tomography to monitoring gas/liquid flow, Chem. Eng. Sci., 52, 2171, 10.1016/S0009-2509(97)00043-2
Yorkey, 1988, Comparing reconstruction algorithms for electrical impedance tomography, IEEE Trans. Biomed. Eng., 34, 843
Osher, 1988, Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations, J. Comput. Phys., 79, 12, 10.1016/0021-9991(88)90002-2
Rondi, 2001, Enhanced electrical impedance tomography via the Mumford–Shah functional, ESAIM: control, Optim. Calc. Variat., 6, 517, 10.1051/cocv:2001121
Chan, 2003, Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients, J. Comput. Phys., 193, 40, 10.1016/j.jcp.2003.08.003
Chan, 2003, Identification of discontinuous coefficients from elliptic problems using total variation regularization, SIAM J. Sci. Comput., 25, 881, 10.1137/S1064827599326020
Vese, 2002, A new multiphase level set framework for image segmentation via the Mumford and Shah model, Int. J. Comput. Vision, 50, 271, 10.1023/A:1020874308076
Soleimani, 2006, Electrical impedance tomography imaging using a priori ultrasound data, Biomed. Eng. Online, 5
Soleimani, 2006, Level set reconstruction of conductivity and permittivity from boundary electrical measurement using experimental data, Inverse Prob. Sci. Eng., 14, 193, 10.1080/17415970500264152
Soleimani, 2006, A narrow-band level set method applied to EIT in brain for cryosurgery monitoring, IEEE Trans. Biomed. Eng., 53, 2257, 10.1109/TBME.2006.877112
Van den doel, 2006, On level set regularization for highly ill-posed distributed parameter estimation problems, J. Comput. Phys., 216, 707, 10.1016/j.jcp.2006.01.022