Nonstandard theta Milstein method for solving stochastic multi-strain tuberculosis model
Tóm tắt
In this article, a novel stochastic multi-strain tuberculosis model is presented. Numerical simulations for this model are the main aim of this work. A non-standard theta Milstein method is constructed to study the proposed model, where the proposed method is based on choosing the weight factor theta. The main advantage of this method is it can be explicit or implicit with large stability regions using the idea of the weighed step introduced by R.E. Mickens. Mean-square stability of nonstandard theta Milstein method is studied. The new scheme shows a greater behavior compared to the theta Milstein method. It is concluded that the proposed scheme preserves the positivity of the solution and numerical stability in larger region than the standard method.
Tài liệu tham khảo
Ding, Y., Xu, M., Hu, L.: Asymptotic behaviour and stability of a stochastic model for AIDS transmission. Appl. Math. Comput. 204, 99–108 (2008).
Dalal, N., Greenhalgh, D., Mao, X. R.: A stochastic model of AIDS and condom use. J. Math. Anal. Appl. 325, 36–53 (2007).
Jiang, D., Ji, C., Shi, N., Yu, J.: The long time behavior of DI SIR epidemic model with stochastic perturbation. J. Math. Anal. Appl. 372, 162–180 (2010).
Jovanovic, M., Krstic, M.: Stochastically perturbed vector-borne disease models with direct transmission. Appl. Math. Model. 36, 5214–5228 (2012).
Lahrouz, A., Omari, L., Kiouach, D.: Global analysis of a deterministic and stochastic nonlinear SIRS epidemic mode nonlinear analysis. Model. Control. 16, 59–76 (2011).
Lu, Q.: Stability of an SIRS system with random perturbations. Phys. A. 388, 3677–3686 (2009).
Yang, J., Wang, X., Li, X.: Global stability of an HIV model with stochastic perturbation. Asian-Eur. J. Math.4.2, 349–358 (2011).
Yu, J., Jiang, D., Shi, N.: Global stability of two-group SIR model with random perturbation. J. Math. Anal. Appl. 360, 235–244 (2009).
Cresson, J., Pierret, F.: Continuous versus discrete structures I-discrete embeddings and ordinary differential equations. math.NA (2014).
Mickens, R. E.: Nonstandard finite difference models of differential equations. World Scientific (1994).
Liu, Q., Jiang, D., Hayat, T., Alsaedi, A.: Dynamics of a stochastic tuberculosis model with antibiotic resistance. Chaos, Solitons Fractals. 109, 223–230 (2018).
Vyambwera, S. M., WitbooiA, P.: Stochastic TB model for a crowded environment. J. Appl. Math., 1–8 (2018).
El Fatini, M., Lahrouz, A., Pettersson, R., Settati, A., Taki, R.: Stochastic stability and instability of an epidemic model with relapse. Appl. Math. Comput. 316, 326–341 (2018).
Liu, Q., Jiang, D.: The dynamics of a stochastic vaccinated tuberculosis model with treatment. Phys. A: Stat. Mech. Appl. 527, 121–274 (2019). https://doi.org/10.1016/j.physa.2019.121274.
Aparicio, J. P., Castillo-ch́avez, C.: Mathematical modelling of tuberculosis epidemics. Math. Biosci. Eng. 6(2), 209–237 (2009).
Brooks–Pollock, E., Roberts, G. O., Keeling, M. J.: A dynamic model of bovine tuberculosis spread and control in Great Britain. Nat. (Lett.) 511, 228–231 (2014).
Castillo-ch́avez, C., Feng, Z.: To treat or not to treat: the case of tuberculosis. J. Math. Biol. 35(6), 629–656 (1997).
Nyabadza, F., Winkler, D.: A simulation age-specific tuberculosis model for the cape town metropole. S. Afr. J. Sci. 109(9/10), 1–7 (2013).
Perez, A. M., Ward, M. P., Charmandarián, A., Ritacco, V.: Simulation model of within–herd transmission of bovine tuberculosis in argentine dairy herds. Prev. Vet. Med. 54(4), 72–361 (2002).
White, P. J., Garnett, G. P.: Mathematical modelling of the epidemiology of tuberculosis. In: Michael, E., Spear, R. C. (eds.)Modelling Parasite Transmission and Control, vol. 673, pp. 127–140 (2010).
Sweilam, N. H., AL-Mekhlafi, S. M.: On the optimal control for fractional multi-strain TB Model. Optim. Control Appl. Meth. Published online in Wiley Online Library (wileyonlinelibrary.com). 37(6), 1355–1374 (2016).
Mickens, R. E.: Dynamic consistency: a fundamental principle for constructing nonstandard finite difference schemes for differential equations. J. Differ. Equ. Appl. 11(7), 645–653 (2005).
Mickens, R. E.: Advances in the applications of nonstandard finite difference schemes. World Scientific (2005).
Sweilam, N. H., Soliman, I. A., Al-Mekhlafi, S. M.: Nonstandard finite difference method for solving the multi-strain TB model. J. Egypt. Math. Soc. 25(2), 129–138 (2017).
Belova, O. V., Chuluunbaatar, O., Kapralova, M. I., Sweilam, N. H.: The role of the bacterial mismatch repair system in SOS-induced mutagenesis: a theoretical background. J. Theor. Biol. 332, 30–41 (2013).
Cohen, T., Murray, M.: Modeling epidemics of multidrug-resistant M. tuberculosis of heterogeneous fitness. Nat. Med. 10(10), 1117–1121 (2004).
Dye, C., Garnett, G. P., Sleeman, K., Williams, B. G.: Prospects for worldwide tuberculosis control under the who dots strategy. Directly observed short-course therapy. Lancet. 352(9144), 1886–1891 (1998).
Sweilam, N. H., AL-Mekhlafi, S. M.: Comparative study for multi-strain tuberculosis (TB) model of fractional order. J. Appl. Math. Inf. Sci. 10(4), 1403–1413 (2016).
Gokdogan, A., Merdan, M., Yildirim, A.: A multistage differential transformation method for approximate solution of Hantavirus infection model. Commun. Nonlinear Sci. Numer. Simul. 17(1), 1–8 (2002).
Yildirim, A., Cherruault, Y.: Analytical approximate solution of a SIR epidemic model with constant vaccination strategy by homotopy perturbation method. Kybernetes. 38(9), 1566–1575 (2009).
Bulut, H., Kumar, D., Singh, J., Swroop, R., Baskonus, H. M.: Analytic study for a fractional model of HIV infection of CD 4+T lymphocyte cells. Math. Nat. Sci. 2, 33–43 (2018).
Sweilam, N. H., AL-Mekhlafi, S. M.: Numerical study for multi-strain tuberculosis (TB) model of variable-order fractional derivatives. J. Adv. Res. 7(2), 271–283 (2016).
Arino, J., Soliman, I. A.: A model for the spread of tuberculosis with drug-sensitive and emerging multidrug-resistant and extensively drug resistant strains. Mathematical and Computational Modelling. Wiley (2015).
Arnold, L.: Stochastic Differential Equations: Theory and Applications. Wiley, New York (1972).
Friedman, A.: Stochastic Differential Equations and Their Applications. Academic Press, New York (1976).
Mao, X.: Stochastic Differential Equations and Applications. Horwood, Chichester (1997).
Li, X. Y., Mao, X. R.: Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation. Discret. Contin. Dyn. Syst. 24, 523–545 (2009).
Higham, D. J.: A-stability and stochastic mean-square stability. BIT. 40, 404–409 (2000).
Talay, D., Tubaro, L.: Expansion of the global error for numerical schemes solving stochastic differential equations. Stoch. Anal. Appl. 8, 483–509 (1990).
World Health Organization: Multidrug and extensively drug-resistant TB (M/XDR-TB): 2012 global report on surveillance and response. World Health Organization (2012).