Nonparametric spatial models for extremes: application to extreme temperature data

Springer Science and Business Media LLC - Tập 16 Số 1 - Trang 75-101 - 2013
Montserrat Fuentes1, John B. Henry2, Brian J. Reich2
1North Carolina State University, NCSU
2Department of Statistics, North Carolina State University (NCSU), Raleigh, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

An, Q., Wang, C., Shterev, I., Wang, E., Carin, L., Dunson, D.: Hierarchical kernel stick-breaking process for multi-task image analysis. In: International Conference on Machine Learning (ICML) (2009, to appear)

Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J.: Statistics of Extremes. Theory and Applications. Wiley, New York (2004)

Blackwell, D.H., MacQueen, J.B.: Discreteness of Ferguson selections. Ann. Stat. 1, 356–358 (1973)

Buishand, D.H.L., Zhou, C.: On spatial extremes: with application to a rainfall problem. Ann. Appl. Probab. 2, 624–642 (2008)

Climate Change Science Program (CCSP): Weather and Climate Extremes in a Changing Climate Regions of Focus: North America, Hawaii, Caribbean, and U.S. Pacific Islands. U.S. Goverments CCSP (2008)

Cooley, D. Nychka, D., Naveau, P.: Bayesian spatial modeling of extreme precipitation return levels. J. Am. Stat. Assoc. 102, 824–840 (2007)

Cooley, D., Naveau, P., Davis, R.: Dependence and Spatial Prediction in Max-Stable Random Fields. University of Colorado (2008)

Dai, A., Wigley, T.M.L., Boville, B.A., Kiehl, J.T., Buja, L.E.: Climates of the 20th and 21st centuries simulated by the NCAR climate system model. J. Climate 14, 485–519 (2001)

Davison, A.C., Smith, R.L.: Models for exceedances over high thresholds. J. R. Stat. Soc. B 15, 393–442 (1990)

Demarta, S., Mcneil, A.J.: The t copula and related copulas. Int. Stat. Rev. 73(1), 111 (2005)

Dunson, D.B., Park, J.H.: Kernel stick-breaking processes. Biometrika 95, 307–323 (2008)

Eastoe, E.F.: A hierarchical model for non-stationary multivariate extremes: a case study of surface-level ozone and NO x data in the UK. Environmetrics 20(4), 428–444 (2009)

Eastoe, E.F., Tawn, J.A.: Modelling non-stationary extremes with application to surface-level ozone. JRSS C 58(1), 25–45 (2009)

Ferguson, T.S.: A Bayesian analysis of some nonparametric problems. Ann. Stat. 1, 209–230 (1973)

Fisher, R.A., Tippett, L.H.C.: Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proc. Camb. Philos. Soc. 24, 180–190 (1928)

Fuentes, M., Reich, B.: Multivariate spatial nonparametric modelling via kernel processes mixing. Mimeo Series #2622 Statistics Department, NCSU. http://www.stat.ncsu.edu/library/mimeo.html (2008)

Gelfand, A.E., Kottas, A., MacEachern, S.N.: Bayesian nonparametric spatial modeling with Dirichlet process mixing. J. Am. Stat. Assoc. 100, 1021–1035 (2005)

Griffin, J.E., Steel, M.F.J.: Order-based dependent Dirichlet processes. J. Am. Stat. Assoc. 101, 179–194 (2006)

Gilleland, E., Katz, R.W.: Analyzing seasonal to interannual extreme weather and climate variability with the extremes toolkit. NCAR tech. report. www.assessment.ucar.edu/pdf/Gilleland2006revised.pdf (2006)

Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Da, X., Maskell, K., Johnson, C.A.: Climate Change 2001: The Scientific Basis. Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report. www.grida.no/publications/other/ipcc_tar/ (2001)

Ishwaran, H., James, L.: Gibbs-sampling methods for stick-breaking priors. J. Am. Stat. Assoc. 96, 161–173 (2001)

Joe, H.: Multivariate Models and Dependence Concepts. Chapman & Hall, London (1997)

Kharin, V., Zwiers, F.: Estimating extremes in transient climate change simulations. J. Climate 18, 1156–1173 (2005)

MacEachern, S.N.: Computational methods for mixture of Dirichlet process models. In: Dey, D., Müller, P., Sinha, D. (eds.) Practical Nonparametric and Semiparametric Bayesian Statistics, pp. 23–44. Springer, New York (1998)

MacEachern, S.N.: Dependent nonparametric processes. In: ASA Proceedings of the Section on Bayesian Statistical Science. American Statistical Association, Alexandria (1999)

Mitchell, J.F.B., Manabe, S., Meleshko, V., Tokioka, T.: Equilibrium climate change and its implications for the future. In: Houghton, J.L, Jenkins, G.J., Ephraums, J.J. (eds.) Climate Change. The IPCC Scientific Assessment. Contribution of Working Group 1 to the First Assessment Report of the Intergovernmental Panel on Climate Change, pp. 137–164. Cambridge University Press, Cambridge (1990)

Nelsen, R.: An Introduction to Copulas. Springer, New York (1999)

Papaspiliopoulos, O., Roberts, G.: Retrospective MCMC for Dirichlet process hierarchical models. Biometrika 95, 169–186 (2008)

Parmesan, C., Root, T.L., Willing, M.R.: Impacts of extreme weather and climate on terrestrial biota. Bull. Am. Meteorol. Soc. 81, 443–450 (2000)

Reich, B.J., Fuentes, M.: A multivariate semiparametric Bayesian spatial modeling framework for hurricane surface wind fields. Ann. Appl. Stat. 1, 249–264 (2007)

Sang, H., Gelfand, A.E.: Hierarchical modeling for extreme values observed over space and time. Environ. Ecol. Stat. 16(3), 407–426 (2009)

Schlather, M., Tawn, J.A.: A dependence measure for multivariate and spatial extreme values: properties and inference. Biometrika 90, 139—156 (2003)

Sethuraman, J.: A constructive definition of Dirichlet priors. Stat. Sin. 4, 639–650 (1994)

Smith, R.L.: Max-stable processes and spatial extremes. Unpublished manuscript. Tech. report at University of North Carolina, Chapel Hill (1990)

Tiago de Oliveira, J.: Bivariate and multivariate extremal distribution. In: Patil, G., et al. (eds.) Statistical Distributions in Scientific Work, vol. 1, pp. 355–361. Reidel, Amsterdam (1975)

van Vliet, A.J.H., Leemans, R.: Rapid species responses to changes in climate require stringent climate protection targets. In: Schellnhuber, H.J., Cramer, W., Nakicinovic, N., Wigley, T., Yohe, G. (eds.) Avoiding Dangerous Climate Change, pp. 135–143. Cambridge University Press, Cambridge (2006)

Yonetani, T., Gordon, H.B.: Simulated changes in the frequency of extremes and regional features of seasonal/annual temperature and precipitation when atmospheric CO2 is doubled. J. Climate 14, 1765–1779 (2001)

Zhang, J., Craigmile, P.F., Cressie, N.: Loss function approaches to predict a spatial quantile and its exceedance region. Technometrics 50 (2), 216–227 (2008)