Nonparametric spatial models for extremes: application to extreme temperature data
Tóm tắt
Từ khóa
Tài liệu tham khảo
An, Q., Wang, C., Shterev, I., Wang, E., Carin, L., Dunson, D.: Hierarchical kernel stick-breaking process for multi-task image analysis. In: International Conference on Machine Learning (ICML) (2009, to appear)
Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J.: Statistics of Extremes. Theory and Applications. Wiley, New York (2004)
Buishand, D.H.L., Zhou, C.: On spatial extremes: with application to a rainfall problem. Ann. Appl. Probab. 2, 624–642 (2008)
Climate Change Science Program (CCSP): Weather and Climate Extremes in a Changing Climate Regions of Focus: North America, Hawaii, Caribbean, and U.S. Pacific Islands. U.S. Goverments CCSP (2008)
Cooley, D. Nychka, D., Naveau, P.: Bayesian spatial modeling of extreme precipitation return levels. J. Am. Stat. Assoc. 102, 824–840 (2007)
Cooley, D., Naveau, P., Davis, R.: Dependence and Spatial Prediction in Max-Stable Random Fields. University of Colorado (2008)
Dai, A., Wigley, T.M.L., Boville, B.A., Kiehl, J.T., Buja, L.E.: Climates of the 20th and 21st centuries simulated by the NCAR climate system model. J. Climate 14, 485–519 (2001)
Davison, A.C., Smith, R.L.: Models for exceedances over high thresholds. J. R. Stat. Soc. B 15, 393–442 (1990)
Eastoe, E.F.: A hierarchical model for non-stationary multivariate extremes: a case study of surface-level ozone and NO x data in the UK. Environmetrics 20(4), 428–444 (2009)
Eastoe, E.F., Tawn, J.A.: Modelling non-stationary extremes with application to surface-level ozone. JRSS C 58(1), 25–45 (2009)
Fisher, R.A., Tippett, L.H.C.: Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proc. Camb. Philos. Soc. 24, 180–190 (1928)
Fuentes, M., Reich, B.: Multivariate spatial nonparametric modelling via kernel processes mixing. Mimeo Series #2622 Statistics Department, NCSU. http://www.stat.ncsu.edu/library/mimeo.html (2008)
Gelfand, A.E., Kottas, A., MacEachern, S.N.: Bayesian nonparametric spatial modeling with Dirichlet process mixing. J. Am. Stat. Assoc. 100, 1021–1035 (2005)
Griffin, J.E., Steel, M.F.J.: Order-based dependent Dirichlet processes. J. Am. Stat. Assoc. 101, 179–194 (2006)
Gilleland, E., Katz, R.W.: Analyzing seasonal to interannual extreme weather and climate variability with the extremes toolkit. NCAR tech. report. www.assessment.ucar.edu/pdf/Gilleland2006revised.pdf (2006)
Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Da, X., Maskell, K., Johnson, C.A.: Climate Change 2001: The Scientific Basis. Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report. www.grida.no/publications/other/ipcc_tar/ (2001)
Ishwaran, H., James, L.: Gibbs-sampling methods for stick-breaking priors. J. Am. Stat. Assoc. 96, 161–173 (2001)
Kharin, V., Zwiers, F.: Estimating extremes in transient climate change simulations. J. Climate 18, 1156–1173 (2005)
MacEachern, S.N.: Computational methods for mixture of Dirichlet process models. In: Dey, D., Müller, P., Sinha, D. (eds.) Practical Nonparametric and Semiparametric Bayesian Statistics, pp. 23–44. Springer, New York (1998)
MacEachern, S.N.: Dependent nonparametric processes. In: ASA Proceedings of the Section on Bayesian Statistical Science. American Statistical Association, Alexandria (1999)
Mitchell, J.F.B., Manabe, S., Meleshko, V., Tokioka, T.: Equilibrium climate change and its implications for the future. In: Houghton, J.L, Jenkins, G.J., Ephraums, J.J. (eds.) Climate Change. The IPCC Scientific Assessment. Contribution of Working Group 1 to the First Assessment Report of the Intergovernmental Panel on Climate Change, pp. 137–164. Cambridge University Press, Cambridge (1990)
Papaspiliopoulos, O., Roberts, G.: Retrospective MCMC for Dirichlet process hierarchical models. Biometrika 95, 169–186 (2008)
Parmesan, C., Root, T.L., Willing, M.R.: Impacts of extreme weather and climate on terrestrial biota. Bull. Am. Meteorol. Soc. 81, 443–450 (2000)
Reich, B.J., Fuentes, M.: A multivariate semiparametric Bayesian spatial modeling framework for hurricane surface wind fields. Ann. Appl. Stat. 1, 249–264 (2007)
Sang, H., Gelfand, A.E.: Hierarchical modeling for extreme values observed over space and time. Environ. Ecol. Stat. 16(3), 407–426 (2009)
Schlather, M., Tawn, J.A.: A dependence measure for multivariate and spatial extreme values: properties and inference. Biometrika 90, 139—156 (2003)
Sethuraman, J.: A constructive definition of Dirichlet priors. Stat. Sin. 4, 639–650 (1994)
Smith, R.L.: Max-stable processes and spatial extremes. Unpublished manuscript. Tech. report at University of North Carolina, Chapel Hill (1990)
Tiago de Oliveira, J.: Bivariate and multivariate extremal distribution. In: Patil, G., et al. (eds.) Statistical Distributions in Scientific Work, vol. 1, pp. 355–361. Reidel, Amsterdam (1975)
van Vliet, A.J.H., Leemans, R.: Rapid species responses to changes in climate require stringent climate protection targets. In: Schellnhuber, H.J., Cramer, W., Nakicinovic, N., Wigley, T., Yohe, G. (eds.) Avoiding Dangerous Climate Change, pp. 135–143. Cambridge University Press, Cambridge (2006)
Yonetani, T., Gordon, H.B.: Simulated changes in the frequency of extremes and regional features of seasonal/annual temperature and precipitation when atmospheric CO2 is doubled. J. Climate 14, 1765–1779 (2001)