Nonparametric density estimation and bandwidth selection with B-spline bases: A novel Galerkin method
Tài liệu tham khảo
Ahlberg, 1963, Convergence properties of the spline fit, J. Soc. Ind. Appl. Math., 11, 95, 10.1137/0111007
Aït-Sahalia, 2016, Bandwidth selection and asymptotic properties of local nonparametric estimators in possibly nonstationary continuous-time models, J. Econometrics, 192, 119, 10.1016/j.jeconom.2015.11.002
Bhattacharya, 2010, Nonparametric Bayesian density estimation on manifolds with applications to planar shapes, Biometrika, 97, 851, 10.1093/biomet/asq044
Botev, 2010, Kernel density estimation via diffusion, Ann. Statist., 38, 2916, 10.1214/10-AOS799
Bowman, 1984, An alternative method of cross-validation for the smoothing of density estimates, Biometrika, 71, 353, 10.1093/biomet/71.2.353
Bowman, 1984, Cross-validation in nonparametric estimation of probabilities and probability densities, Biometrika, 71, 341, 10.1093/biomet/71.2.341
Brunk, 1978, Univariate density estimation by orthogonal series, Biometrika, 65(3), 521, 10.1093/biomet/65.3.521
Carroll, 2013, Unexpected properties of bandwidth choice when smoothing discrete data from construction a functional data classifier, Ann. Statist., 41(6), 2739
Céa, 1964, Approximation variationnelle des problèmes aux limites, 14, 345
Cencov, 1962, Evaluation of an unknown distribution density from observations, Soviet Math., 3, 1559
Cheng, 2008, Kernel methods for optimal change-points estimation in derivatives, J. Comput. Graph. Statist., 17, 56, 10.1198/106186008X289164
Christensen, 2003
Ciarlet, 2002
Colombo, 2018, Uncertainty quantification of geochemical and mechanical compaction in layered sedimentary basins, Comput. Methods Appl. Mech. Engrg., 328, 122, 10.1016/j.cma.2017.08.049
Cui, 2020, Nonparametric density estimation by B-spline duality, Econometric Theory, 1
Cui, 2021, A data-driven framework for consistent financial valuation and risk measurement, European J. Oper. Res., 289(1), 381, 10.1016/j.ejor.2020.07.011
Cui, 2021, Efficient simulation of generalized SABR and stochastic local volatility models based on Markov chain approximations, European J. Oper. Res., 290(3), 1046, 10.1016/j.ejor.2020.09.008
Dai, 2017, Optimal Bayes classifiers for functional data and density ratios, Biometrika, 104, 545
Ditkowski, 2020, Density estimation in uncertainty propagation problems using a surrogate model, SIAM/ASA J. Uncertain. Quantif., 8, 261, 10.1137/18M1205959
Donoho, 1996, Density estimation by wavelet thresholding, Ann. Statist., 24(2), 508
Durrett, 2010
Eilers, 1996, Flexible smoothing with B-splines and penalties, Statist. Sci., 11(2), 89
Fan, 1996
Fix, 1951
Gu, 1993, Smoothing spline density estimation: a dimensionless automatic algorithm, J. Amer. Statist. Assoc., 88(422), 495, 10.1080/01621459.1993.10476300
Gu, 1993, Smoothing spline density estimation: theory, Ann. Statist., 21(1), 217
Hall, 1981, On trigonometric series estimates of densities, Ann. Statist., 9, 683, 10.1214/aos/1176345474
Hall, 1982, Cross-validation in density estimation, Biometrika, 69, 383, 10.1093/biomet/69.2.383
Hall, 1987, Cross-validation and the smoothing of orthogonal series density estimators, J. Multivariate Anal., 21, 189, 10.1016/0047-259X(87)90001-7
Hall, 2005, Bandwidth choice for nonparametric classification, Ann. Statist., 33, 284, 10.1214/009053604000000959
Hall, 1991, On optimal data-based bandwidth selection in kernel density estimation, Biometrika, 78, 263, 10.1093/biomet/78.2.263
Heil, 2011
Herrmann, 1997, Local bandwidth choice in kernel regression estimation, J. Comput. Graph. Statist., 6, 35
Horn, 2012
Huang, 1999, Density estimation by wavelet-based reproducing kernels, Statist. Sinica, 9, 137
Izenman, 1991, Recent developments in nonparametric density estimation, J. Amer. Statist. Assoc., 86(413), 205
Jones, 1996, A brief survey of bandwidth selection for density estimation, J. Amer. Statist. Assoc., 91, 401, 10.1080/01621459.1996.10476701
Jones, 1996, Progress in data-based bandwidth selection for kernel density estimation, Comput. Statist., 11, 337
Kirkby, 2015, Efficient option pricing by frame duality with the fast fourier transform, SIAM J. Financial Math., 6(1), 713, 10.1137/140989480
Kirkby, 2017, Robust option pricing with characteristic functions and the B-spline order of density projection, J. Comput. Finance, 21(2), 101
Kirkby, 2019, Static hedging and pricing of exotic options with payoff frames, Math. Finance, 29(2), 612, 10.1111/mafi.12184
Kirkby, 2020, An analysis of dollar cost averaging and market timing investment strategies, European J. Oper. Res., 286(3), 1168, 10.1016/j.ejor.2020.04.055
Koo, 1996, Bivariate B-splines for tensor logspline density estimation, Comput. Statist. Data Anal., 21, 31, 10.1016/0167-9473(95)00003-8
Kooperberg, 1991, A study of logspline density estimation, Comput. Statist. Data Anal., 12, 327, 10.1016/0167-9473(91)90115-I
Kooperberg, 1992, Logspline density estimation for censored data, J. Comput. Graph. Statist., 1, 301
Kooperberg, 2004, Comparison of parametric and bootstrap approaches to obtaining confidence intervals for logspline density estimation, J. Comput. Graph. Statist., 1, 106, 10.1198/1061860043047
Lai, 2007
Leitao, 2018, On the data-driven COS method, Appl. Math. Comput., 317, 68, 10.1016/j.amc.2017.09.002
Leitao, 2020, Model-free computation of risk contributions in credit portfolios, Appl. Math. Comput., 382, 10.1016/j.amc.2020.125351
Loader, 1999, Bandwidth selection: classical or plug-in?, Ann. Statist., 27(2), 415
Marron, 1985, An asymptotically efficient solution to the bandwidth problem of kernel density estimation, Ann. Statist., 13, 1011, 10.1214/aos/1176349653
Masdemont, 2014, Haar wavelets-based approach for quantifying credit portfolio losses, Quant. Finance, 14, 1587, 10.1080/14697688.2011.595731
Matthies, 2005, Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations, Comput. Methods Appl. Mech. Engrg., 194, 1295, 10.1016/j.cma.2004.05.027
McCloud, 2020, Determining the number of effective parameters in kernel density estimation, Comput. Statist. Data Anal., 143, 10.1016/j.csda.2019.106843
Morača, 2008, Bounds for norms of the matrix inverse and the smallest singular value, Linear Algebra Appl., 429, 2589, 10.1016/j.laa.2007.12.026
Muller, 1998, Bayesian inference with wavelets: Density estimation, J. Comput. Graph. Statist., 7, 456
Ortiz-Gracia, 2014, Efficient VaR and expected shortfall computations for nonlinear portfolios within the delta-gamma approach, Appl. Math. Comput., 244, 16, 10.1016/j.amc.2014.06.110
Papp, 2014, Shape-constrained estimation using nonnegative splines, J. Comput. Graph. Statist., 23, 211, 10.1080/10618600.2012.707343
Parzen, 1962, On estimation of a probability density function and mode, Ann. Math. Stat., 33, 1065, 10.1214/aoms/1177704472
Penev, 1997, On non-negative wavelet-based density estimators, J. Nonparametr. Stat., 7, 365, 10.1080/10485259708832711
Peter, 2008, Maximum likelihood wavelet density estimation with applications to image and shape matching, IEEE Trans. Image Process., 17(4), 458, 10.1109/TIP.2008.918038
Racine, 2017, Nonparametric conditional quantile estimation: A locally weighted quantile kernel approach, J. Econometrics, 201, 72, 10.1016/j.jeconom.2017.06.020
Rahman, 2020, A spline chaos expansion, SIAM/ASA J. Uncertain. Quantif., 8, 27, 10.1137/19M1239702
Rathke, 2019, Fast multivariate log-concave density estimation, Comput. Statist. Data Anal., 140, 41, 10.1016/j.csda.2019.04.005
Redner, 1999, Convergence rates for uniform B-spline density estimators part I: one dimension, SIAM J. Sci. Comput., 20(6), 1929, 10.1137/S1064827595291996
Rosenblatt, 1956, Remarks on some nonparametric estimates of a density function, Ann. Math. Stat., 27, 832, 10.1214/aoms/1177728190
Rudemo, 1982, Empirical choice of histograms and kernel density estimators, Scand. J. Stat., 9, 65
Schwartz, 1967, Estimation of a probability density by an orthogonal series, Ann. Math. Stat., 38, 1261, 10.1214/aoms/1177698795
Scott, 1987, Biased and unbiased cross-validation in density estimation, J. Amer. Stat. Assoc., 82, 1131, 10.1080/01621459.1987.10478550
Sheather, 2004, Density estimation, Statist. Sci., 19, 588, 10.1214/088342304000000297
Sheather, 1991, A reliable data-based bandwidth selection method for kernel density estimation, J. R. Stat. Soc. Ser. B Stat. Methodol., 53, 683
Treviño, 2019, The radial wavelet frame density estimator, Comput. Statist. Data Anal., 130, 111, 10.1016/j.csda.2018.08.021
Tsybakov, 2008
Unser, 1996, Vanishing moments and the approximation power of wavelet expansions, 629
Unser, 1997, On the approximation power of convolution-based least squares versus interpolation, IEEE Trans. Signal Process., 45, 1697, 10.1109/78.599940
Wahba, 1981, Data-based optimal smoothing of orthogonal series density estimates, Ann. Statist., 9, 146, 10.1214/aos/1176345341
Wand, 1994, Fast computation of multivariate kernel estimators, J. Comput. Graph. Statist., 3, 433
Wand, 1994
Wang, 2019, Computing the Gerber–Shiu function by frame duality projection, Scand. Actuar. J., 4, 291, 10.1080/03461238.2018.1557739
Watson, 1969, Density estimation by orthogonal series, Ann. Math. Stat., 38, 1262
Wegman, 1972, Nonparametric probability density estimation: A summary of available methods, Technometrics, 14(3), 533, 10.1080/00401706.1972.10488943
Xie, 2020
Young, 1980
Zhang, 2020, Valuing equity-linked death benefits in general exponential Lévy models, J. Comput. Appl. Math., 365, 10.1016/j.cam.2019.112377