Nonorientable, incompressible surfaces in punctured-torus bundles over $$S^1$$
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas - Tập 113 - Trang 1975-2000 - 2018
Tóm tắt
We classify incompressible,
$$\partial $$
-incompressible, nonorientable surfaces in punctured-torus bundles over
$$S^1$$
. We use the ideas of Floyd, Hatcher, and Thurston. The main tool is to put our surface in the “Morse position” with respect to the projection of the bundle into the basis
$$S^1$$
.
Tài liệu tham khảo
Bredon, G.E., Wood, J.W.: Non-orientable surfaces in orientable 3-manifolds. Invent. Math. 7, 83–100 (1969)
Culler, M., Jaco, W., Rubinstein, J.H.: Incompressible surfaces in once-punctured-torus bundles. Proc. Lond. Math. Soc. 45(3), 385–419 (1982)
Floyd, W., Hatcher, A.: Incompressible surfaces in punctured-torus bundles. Topol. Appl. 13, 263–282 (1982)
Hatcher, A., Thurston, W.: Incompressible surfaces in 2-bridge knot complements. Invent. Math. 79, 225–246 (1985)
Hoste, J., Przytycki, J .H.: A survey of skein modules of 3-manifolds, in Knots 90. In: Kawauchi, A. (ed.) Proceedings of the International Conference on Knot Theory and Related Topics, Osaka (Japan), August 15-19, 1990, pp. 363–379. Walter de Gruyter, Berlin (1992)
Jakobsche, W., Przytycki, J.H.: Topology of 3-dimensional manifolds. Warsaw University Press, Warsaw (1987). in Polish
Lozano, M., Przytycki, J.H.: Incompressible surfaces in the exterior of a closed 3 braid. I. Surfaces with horizontal boundary components, Math. Proc. Camb. Philos. Soc. 98, 275–299 (1985)
Lozano, M., Przytycki, J.H.: Incompressible surfaces in the exterior of a closed 3 braid. I. Surfaces with vertical boundary components (in preparation)
Magnus, W., Karrass, A., Solitar, D.: Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations, 1966. Dover, New York (1976). Second revised edition
Przytycki, J.H.: Incompressible surfaces in \(3\)-manifolds. Ph.D. dissertation, Columbia University, thesis advisor: Professor Joan Birman (1981)
Przytycki, J.H.: Nonorientable, incompressible surfaces of genus \(3\) in \(M_{\phi (\frac{\lambda }{\mu })}\) manifolds. Collect. Math. XXXIV(1), 37–79 (1983)
Przytycki, J.H.: Nonorientable, incompressible surfaces in Seifert fibered spaces (unfinished manuscript) (1981)
Przytycki, J.H.: Skein modules of 3-manifolds. Bull. Ac. Pol. Math. 39(1–2), 91–100 (1991). arXiv:math/0611797 [math.GT]
Przytycki, J.H.: Algebraic topology based on knots: an introduction. In: Suzuki, Shin’ichi (ed.) Knots 96, Proceedings of the Fifth International Research Institute of MSJ, pp. 279–297. World Scientific, Singapore (1997)
Przytycki, J.H.: Fundamentals of Kauffman bracket skein modules. Kobe Math. J. 16(1), 45–66 (1999). arXiv:math/9809113 [math.GT]
Rubinstein, J.H.: One sided Heegaard splitting of 3-manifolds. Pac. J. Math. 76(1), 185–200 (1978)
Thurston, W.: On the geometry and dynamics of diffeomorphisms of surfaces, I, preprint 1976; published. Bull. Am. Math. Soc. 19(2), 417–431 (1988)
Waldhausen, F.: Eine Klasse von 3-dimensionalen Mannigfaltigkeiten I. Invent. Math. 3, 308–333 (1967)
Waldhausen, F.: Eine Klasse von 3-dimensionalenMannigfaltigkeiten I. Invent. Math. 4, 87–117 (1967)
