Nonmetric Common Factor Analysis: An Alternating Least Squares Method with Optimal Scaling Features
Tóm tắt
Từ khóa
Tài liệu tham khảo
Clint, M., and Jennings, A. (1970) The evaluation of eigenvalues and eigenvectors of real symmetric matrices by simultaneous iteration. The Computet Journal, 13, 76–80.
Cottle, R.W., and Danzig, T.B. (1968) Complementary pivot theory of mathematical programming. In G.B. Danzig and A.F. Veinott (Eds), Mathematics of decision sciences, Part I. Providence. K.I.: American Mathematical Society.
Cramer, E.M. (1974) On Browne’s solution for oblique procrustes rotation. Psychometrika, 39, 159–163.
de Leeuw, J., Takane, Y. and Young, F.W. (1978) INDISCAL: An indicator method of multidimensional scaling (in preparation).
de Leeuw, J., Young, F.W., and Takane, Y. (1976) Additive structure in qualitative data: An alternating least squares method with optimal scaling features. Psychometrika, 41, 471–503.
Golub, G.H., and Saunders, M.A. (1969) Linear least squares and quadratic programming. Technical Report No. CS134, Stanford University.
Harman, H.H., and Jones, W.H. (1966) Factor analysis by minimizing residuals (minres). Psychometrika, 31, 351–368.
Hidano, T., et al. (1971) A methodological study of test battery construction. Japanese Journal of Educational Psychology (in Japanese with English abstract), 19, 37–51.
Hildreth, C.A. (1957) A quadratic programming procedure. Naval Research Logistics Quarterly, 4, 79–85.
Kruskal, J.B. (1964) Nonmetric multidimensional scaling by optimizing goodness-of-fit to a nonmetric hypothesis. Psychomettika, 29, 1–27.
Kruskal, J.B. (1965) Analysis of factorial experiments by estimating monotone transformations of the data. Journal of the Royal Statistical Society, Series B, 27, 251–263.
Kruskal, J.B., and Shepard, R.N. (1971) A nonmetric variety of linear factor analysis. Psychometrika, 39, 123–157.
Lawson, C.L., and Hanson, R.J. (1974) Solving least squares problems. Englewood Cliffs, N.J.: Prentice-Hall.
Lingoes, J.C. (1973) The Guttman-Lingoes nonmetric program series. Ann Arbor, Michigan: Mathesis Press.
Lingoes, J.C, and Guttman, L. (1967) Nonmetric factor analysis: A rank reducing alternative to linear factor analysis. Multivariate Behavioral Research. 2, 485–505.
McDonald, R.P., Ishizuka, T., and Nishisato, S. (1977) Weighting multicategory data to the common factor model. Paper presented at the Psychometric Society meeting.
Ramsay, J.O. (1975) Solving implicit equations in psychometric data analysis. Psychometriha. 40, 337–360.
Roskam, E.E. (1968) Metric analysis of ordinal data in psychology. Voorschoten.
Shepard, R.N. (1962) The analysis of proximities: Multidimensional scaling with unknown distance function, I & II. Psychometrika, 27, 125–140, 219–246.
Stoer, J. (1971) On the numerical solution of constrained least squares problems. SIAM Journal of Numerical Analysis, 8, 382–411.
Takane, Y., Young, F.W., and de Leeuw, J. (1977) Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features. Psychometrika, 42, 7–67.
Takane, Y., Young, F.W., and de Leeuw, J. (1978) The principal components of mixed measurement level multivariate data: An alternating least squares method with optimal scaling features. Psychometriha, in press.
Thomson, G.H. (1951) The factorial analysis of human ability. New York: Houghton Mifflin.
Young, F.W. (1972) A model for polynomial conjoint analysis algorithms. In R.N. Shepard et. al. (Eds.), Multidimensional scaling: Theory and applications in the behavioral sciences. Vol. I. New York: Seminar Press.
Young, F.W., de Leeuw, J, and Takane, Y. (1976a) Multiple and canonical regression with a mix of qualitative and quantitative variables: An alternating least squares method with optimal scaling features. Psychometrika, 41, 505–529.
Young, F.W., de Leeuw, J., and Takane, Y. (1976b) Quantifying qualitative data. Psychometric Lab Report #149, Univ. of North Carolina.
Young, F.W., de Leeuw, J., and Takane, Y. (1979) Multidimensional scaling: Theory and methods. (in preparation).
Zangwill, W.I. (1969) Nonlinear programming: A unified approach. New York: Prentice-Hall.