Nonmagnetic Sn doping effect on the electronic and magnetic properties of antiferromagnetic topological insulator MnBi2 Te4
Tài liệu tham khảo
Wilczek, 1987, Two applications of axion electrodynamics, Phys. Rev. Lett., 58, 1799, 10.1103/PhysRevLett.58.1799
Mong, 2010, Antiferromagnetic topological insulators, Phys. Rev. B, 81, 10.1103/PhysRevB.81.245209
Li, 2010, Dynamical axion field in topological magnetic insulators, Nat. Phys., 6, 284, 10.1038/nphys1534
Yu, 2010, Quantized anomalous hall effect in magnetic topological insulators, Science, 329, 61, 10.1126/science.1187485
Chang, 2013, Experimental observation of the quantum anomalous hall effect in a magnetic topological insulator, Science, 340, 167, 10.1126/science.1234414
Wang, 2013, Quantum anomalous hall effect in 2D organic topological insulators, Phys. Rev. Lett., 110, 10.1103/PhysRevLett.110.196801
Qi, 2011, Topological insulators and superconductors, Rev. Modern Phys., 83, 1057, 10.1103/RevModPhys.83.1057
Wan, 2011, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B, 83, 10.1103/PhysRevB.83.205101
Zhang, 2014, Topological states in ferromagnetic CdO/EuO superlattices and quantum wells, Phys. Rev. Lett., 112, 10.1103/PhysRevLett.112.096804
Kuroda, 2017, Evidence for magnetic Weyl fermions in a correlated metal, Nature Mater., 16, 1090, 10.1038/nmat4987
Chang, 2015, High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator, Nature Mater., 14, 473, 10.1038/nmat4204
Okada, 2016, Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state, Nature Commun., 7, 12245, 10.1038/ncomms12245
Tokura, 2019, Magnetic topological insulators, Nat. Rev. Phys., 1, 126, 10.1038/s42254-018-0011-5
Otrokov, 2019, Prediction and observation of an antiferromagnetic topological insulator, Nature, 576, 416, 10.1038/s41586-019-1840-9
Gong, 2019, Experimental realization of an intrinsic magnetic topological insulator, Chin. Phys. Lett., 36, 10.1088/0256-307X/36/7/076801
Zeugner, 2019, Chemical aspects of the candidate antiferromagnetic topological insulator MnBi2Te4, Chem. Mater., 31, 2795, 10.1021/acs.chemmater.8b05017
Deng, 2020, Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4, Science, 367, 895, 10.1126/science.aax8156
Lee, 2019, Spin scattering and noncollinear spin structure-induced intrinsic anomalous Hall effect in antiferromagnetic topological insulator MnBi2Te4, Phys. Rev. Res., 1, 10.1103/PhysRevResearch.1.012011
Zhang, 2019, Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect, Phys. Rev. Lett., 122, 10.1103/PhysRevLett.122.206401
Yan, 2019, Crystal growth and magnetic structure of MnBi2Te4, Phys. Rev. Mater., 3
Hao, 2019, Gapless surface Dirac cone in antiferromagnetic topological insulator MnBi2Te4, Phys. Rev. X, 9
Chen, 2019, Topological electronic structure and its temperature evolution in antiferromagnetic topological insulator MnBi2Te4, Phys. Rev. X, 9
Wu, 2019, Natural van der Waals heterostructural single crystals with both magnetic and topological properties, Sci. Adv., 5, 10.1126/sciadv.aax9989
Li, 2019, Magnetically controllable topological quantum phase transitions in the antiferromagnetic topological insulator MnBi2Te4, Phys. Rev. B, 100
Yan, 2022, Vapor transport growth of MnBi2Te4 and related compounds, J. Alloys Compd., 906, 10.1016/j.jallcom.2022.164327
Liu, 2020, Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator, Nature Mater., 19, 522, 10.1038/s41563-019-0573-3
Li, 2020, Antiferromagnetic topological insulator MnBi2Te4: synthesis and magnetic properties, Phys. Chem. Chem. Phys., 22, 556, 10.1039/C9CP05634C
Zeugner, 2019, Chemical aspects of the candidate antiferromagnetic topological insulator MnBi2Te4, Chem. Mater., 31, 2795, 10.1021/acs.chemmater.8b05017
OrujluE, 2020, Phase equilibria in the SnBi2Te4-MnBi2Te4 system and characterization of the Sn1−xMnxBi2Te4 solid solutions, Phys. Chem. Solid State, 21, 113, 10.15330/pcss.21.1.113-116
Ahmad, 2020, An anomalously high Seebeck coefficient and power factor in ultrathin Bi2Te3 film: Spin–orbit interaction, J. Appl. Phys., 128, 10.1063/5.0007440
Chuang, 2018, Anti-site defect effect on the electronic structure of a Bi2Te3 topological insulator, RSC Adv., 8, 423, 10.1039/C7RA08995C
Neudachina, 2005, XPS study of SnTe(100) oxidation by molecular oxygen, Surf. Sci., 584, 77, 10.1016/j.susc.2005.01.061
Iwanowski, 2004, X-ray photoelectron spectra of zinc-blende MnTe, Chem. Phys. Lett., 387, 110, 10.1016/j.cplett.2004.01.109
Jiao, 2021, The layer-inserting growth of antiferromagnetic topological insulator MnBi2Te4 based on symmetry and its x-ray photoelectron spectroscopy, J. Supercond. Nov. Magn., 34, 1485, 10.1007/s10948-021-05821-1
Wang, 2014, Low-temperature large magnetocaloric effect in the antiferromagnetic CeSi compound, J. Alloys Compd., 587, 10, 10.1016/j.jallcom.2013.10.183
Narsinga Rao, 2015, Antiferromagnetism of Ni2NbBO6 with S=1 dimer quasi-one-dimensional armchair chains, Phys. Rev. B, 91
Chen, 2019, Intrinsic magnetic topological insulator phases in the Sb doped MnBi2Te4 bulks and thin flakes, Nature Commun., 10, 1
Zhu, 2021, Magnetic and electrical transport study of the antiferromagnetic topological insulator Sn-doped MnBi2Te4, Phys. Rev. B, 103, 10.1103/PhysRevB.103.144407
Yan, 2019, Evolution of structural, magnetic, and transport properties in MnBi2−xSbxTe4, Phys. Rev. B, 100, 10.1103/PhysRevB.100.104409
Tan, 2020, Metamagnetism of weakly coupled antiferromagnetic topological insulators, Phys. Rev. Lett., 124, 10.1103/PhysRevLett.124.197201
Qian, 2022, Magnetic dilution effect and topological phase transitions in (Mn1−xPbx)Bi2Te4, Phys. Rev. B, 106, 10.1103/PhysRevB.106.045121
Chakraborty, 1996, Resistivity minima in concentrated γ−Cu100−xMnx alloys (36⩽x⩽83), Phys. Rev. B, 53, 6235, 10.1103/PhysRevB.53.6235
Abrahams, 1979, Scaling theory of localization: Absence of quantum diffusion in two dimensions, Phys. Rev. Lett., 42, 673, 10.1103/PhysRevLett.42.673
Kondo, 1964, Resistance minimum in dilute magnetic alloys, Progr. Theoret. Phys., 32, 37, 10.1143/PTP.32.37
Liu, 2019, Quasi-2D transport and weak antilocalization effect in few-layered VSe2, Nano Lett., 19, 4551, 10.1021/acs.nanolett.9b01412
Jia, 2010, Effects of ferroelectric-poling-induced strain on the quantum correction to low-temperature resistivity of manganite thin films, Phys. Rev. B, 82, 10.1103/PhysRevB.82.104418
Guo, 2012, Magnetic field mediated low-temperature resistivity upturn in electron-doped La1−xHfxMnO3 manganite oxides, J. Appl. Phys., 112, 10.1063/1.4770320
Sürgers, 2014, Large topological Hall effect in the non-collinear phase of an antiferromagnet, Nature Commun., 5, 10.1038/ncomms4400
Cui, 2019, Transport properties of thin flakes of the antiferromagnetic topological insulator MnBi2Te4, Phys. Rev. B, 99, 10.1103/PhysRevB.99.155125
Kuropatwa, 2012, Thermoelectric properties of stoichiometric compounds in the (SnTe)x(Bi2Te3)y system, Z. Anorg. Allg. Chem., 638, 2640, 10.1002/zaac.201200284
Zou, 2018, Atomic disorders in layer structured topological insulator SnBi2Te4 nanoplates, Nano Res., 11, 696, 10.1007/s12274-017-1679-z
Tak, 2017, Thermoelectric transport properties of tetradymite-type Pb1−xSnxBi2Te4 compounds, J. Alloys Compd., 690, 966, 10.1016/j.jallcom.2016.08.196
Hao, 2019, Gapless surface Dirac cone in antiferromagnetic topological insulator MnBi2Te4, Phys. Rev. X, 9
Yan, 2021, Origins of electronic bands in the antiferromagnetic topological insulator MnBi2Te4, Phys. Rev. B, 104, 10.1103/PhysRevB.104.L041102
Estyunin, 2020, Signatures of temperature driven antiferromagnetic transition in the electronic structure of topological insulator MnBi2Te4, APL Mater., 8, 10.1063/1.5142846