Nonmagnetic Sn doping effect on the electronic and magnetic properties of antiferromagnetic topological insulator MnBi2Te4

Physica B: Condensed Matter - Tập 657 - Trang 414799 - 2023
Susmita Changdar1, Susanta Ghosh1, Kritika Vijay2,3, Indrani Kar1, Sayan Routh1, P.K. Maheshwari1, Soumya Ghorai1, Soma Banik2,3, S. Thirupathaiah1
1Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Salt Lake, JD Block, Sector III, Bidhannagar, Kolkata, 700106, India
2Synchrotrons Utilization Section, Raja Ramanna Centre for Advanced Technology, Indore, 452013, India
3Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India

Tài liệu tham khảo

Wilczek, 1987, Two applications of axion electrodynamics, Phys. Rev. Lett., 58, 1799, 10.1103/PhysRevLett.58.1799 Mong, 2010, Antiferromagnetic topological insulators, Phys. Rev. B, 81, 10.1103/PhysRevB.81.245209 Li, 2010, Dynamical axion field in topological magnetic insulators, Nat. Phys., 6, 284, 10.1038/nphys1534 Yu, 2010, Quantized anomalous hall effect in magnetic topological insulators, Science, 329, 61, 10.1126/science.1187485 Chang, 2013, Experimental observation of the quantum anomalous hall effect in a magnetic topological insulator, Science, 340, 167, 10.1126/science.1234414 Wang, 2013, Quantum anomalous hall effect in 2D organic topological insulators, Phys. Rev. Lett., 110, 10.1103/PhysRevLett.110.196801 Qi, 2011, Topological insulators and superconductors, Rev. Modern Phys., 83, 1057, 10.1103/RevModPhys.83.1057 Wan, 2011, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B, 83, 10.1103/PhysRevB.83.205101 Zhang, 2014, Topological states in ferromagnetic CdO/EuO superlattices and quantum wells, Phys. Rev. Lett., 112, 10.1103/PhysRevLett.112.096804 Kuroda, 2017, Evidence for magnetic Weyl fermions in a correlated metal, Nature Mater., 16, 1090, 10.1038/nmat4987 Chang, 2015, High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator, Nature Mater., 14, 473, 10.1038/nmat4204 Okada, 2016, Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state, Nature Commun., 7, 12245, 10.1038/ncomms12245 Tokura, 2019, Magnetic topological insulators, Nat. Rev. Phys., 1, 126, 10.1038/s42254-018-0011-5 Otrokov, 2019, Prediction and observation of an antiferromagnetic topological insulator, Nature, 576, 416, 10.1038/s41586-019-1840-9 Gong, 2019, Experimental realization of an intrinsic magnetic topological insulator, Chin. Phys. Lett., 36, 10.1088/0256-307X/36/7/076801 Zeugner, 2019, Chemical aspects of the candidate antiferromagnetic topological insulator MnBi2Te4, Chem. Mater., 31, 2795, 10.1021/acs.chemmater.8b05017 Deng, 2020, Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4, Science, 367, 895, 10.1126/science.aax8156 Lee, 2019, Spin scattering and noncollinear spin structure-induced intrinsic anomalous Hall effect in antiferromagnetic topological insulator MnBi2Te4, Phys. Rev. Res., 1, 10.1103/PhysRevResearch.1.012011 Zhang, 2019, Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect, Phys. Rev. Lett., 122, 10.1103/PhysRevLett.122.206401 Yan, 2019, Crystal growth and magnetic structure of MnBi2Te4, Phys. Rev. Mater., 3 Hao, 2019, Gapless surface Dirac cone in antiferromagnetic topological insulator MnBi2Te4, Phys. Rev. X, 9 Chen, 2019, Topological electronic structure and its temperature evolution in antiferromagnetic topological insulator MnBi2Te4, Phys. Rev. X, 9 Wu, 2019, Natural van der Waals heterostructural single crystals with both magnetic and topological properties, Sci. Adv., 5, 10.1126/sciadv.aax9989 Li, 2019, Magnetically controllable topological quantum phase transitions in the antiferromagnetic topological insulator MnBi2Te4, Phys. Rev. B, 100 Yan, 2022, Vapor transport growth of MnBi2Te4 and related compounds, J. Alloys Compd., 906, 10.1016/j.jallcom.2022.164327 Liu, 2020, Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator, Nature Mater., 19, 522, 10.1038/s41563-019-0573-3 Li, 2020, Antiferromagnetic topological insulator MnBi2Te4: synthesis and magnetic properties, Phys. Chem. Chem. Phys., 22, 556, 10.1039/C9CP05634C Zeugner, 2019, Chemical aspects of the candidate antiferromagnetic topological insulator MnBi2Te4, Chem. Mater., 31, 2795, 10.1021/acs.chemmater.8b05017 OrujluE, 2020, Phase equilibria in the SnBi2Te4-MnBi2Te4 system and characterization of the Sn1−xMnxBi2Te4 solid solutions, Phys. Chem. Solid State, 21, 113, 10.15330/pcss.21.1.113-116 Ahmad, 2020, An anomalously high Seebeck coefficient and power factor in ultrathin Bi2Te3 film: Spin–orbit interaction, J. Appl. Phys., 128, 10.1063/5.0007440 Chuang, 2018, Anti-site defect effect on the electronic structure of a Bi2Te3 topological insulator, RSC Adv., 8, 423, 10.1039/C7RA08995C Neudachina, 2005, XPS study of SnTe(100) oxidation by molecular oxygen, Surf. Sci., 584, 77, 10.1016/j.susc.2005.01.061 Iwanowski, 2004, X-ray photoelectron spectra of zinc-blende MnTe, Chem. Phys. Lett., 387, 110, 10.1016/j.cplett.2004.01.109 Jiao, 2021, The layer-inserting growth of antiferromagnetic topological insulator MnBi2Te4 based on symmetry and its x-ray photoelectron spectroscopy, J. Supercond. Nov. Magn., 34, 1485, 10.1007/s10948-021-05821-1 Wang, 2014, Low-temperature large magnetocaloric effect in the antiferromagnetic CeSi compound, J. Alloys Compd., 587, 10, 10.1016/j.jallcom.2013.10.183 Narsinga Rao, 2015, Antiferromagnetism of Ni2NbBO6 with S=1 dimer quasi-one-dimensional armchair chains, Phys. Rev. B, 91 Chen, 2019, Intrinsic magnetic topological insulator phases in the Sb doped MnBi2Te4 bulks and thin flakes, Nature Commun., 10, 1 Zhu, 2021, Magnetic and electrical transport study of the antiferromagnetic topological insulator Sn-doped MnBi2Te4, Phys. Rev. B, 103, 10.1103/PhysRevB.103.144407 Yan, 2019, Evolution of structural, magnetic, and transport properties in MnBi2−xSbxTe4, Phys. Rev. B, 100, 10.1103/PhysRevB.100.104409 Tan, 2020, Metamagnetism of weakly coupled antiferromagnetic topological insulators, Phys. Rev. Lett., 124, 10.1103/PhysRevLett.124.197201 Qian, 2022, Magnetic dilution effect and topological phase transitions in (Mn1−xPbx)Bi2Te4, Phys. Rev. B, 106, 10.1103/PhysRevB.106.045121 Chakraborty, 1996, Resistivity minima in concentrated γ−Cu100−xMnx alloys (36⩽x⩽83), Phys. Rev. B, 53, 6235, 10.1103/PhysRevB.53.6235 Abrahams, 1979, Scaling theory of localization: Absence of quantum diffusion in two dimensions, Phys. Rev. Lett., 42, 673, 10.1103/PhysRevLett.42.673 Kondo, 1964, Resistance minimum in dilute magnetic alloys, Progr. Theoret. Phys., 32, 37, 10.1143/PTP.32.37 Liu, 2019, Quasi-2D transport and weak antilocalization effect in few-layered VSe2, Nano Lett., 19, 4551, 10.1021/acs.nanolett.9b01412 Jia, 2010, Effects of ferroelectric-poling-induced strain on the quantum correction to low-temperature resistivity of manganite thin films, Phys. Rev. B, 82, 10.1103/PhysRevB.82.104418 Guo, 2012, Magnetic field mediated low-temperature resistivity upturn in electron-doped La1−xHfxMnO3 manganite oxides, J. Appl. Phys., 112, 10.1063/1.4770320 Sürgers, 2014, Large topological Hall effect in the non-collinear phase of an antiferromagnet, Nature Commun., 5, 10.1038/ncomms4400 Cui, 2019, Transport properties of thin flakes of the antiferromagnetic topological insulator MnBi2Te4, Phys. Rev. B, 99, 10.1103/PhysRevB.99.155125 Kuropatwa, 2012, Thermoelectric properties of stoichiometric compounds in the (SnTe)x(Bi2Te3)y system, Z. Anorg. Allg. Chem., 638, 2640, 10.1002/zaac.201200284 Zou, 2018, Atomic disorders in layer structured topological insulator SnBi2Te4 nanoplates, Nano Res., 11, 696, 10.1007/s12274-017-1679-z Tak, 2017, Thermoelectric transport properties of tetradymite-type Pb1−xSnxBi2Te4 compounds, J. Alloys Compd., 690, 966, 10.1016/j.jallcom.2016.08.196 Hao, 2019, Gapless surface Dirac cone in antiferromagnetic topological insulator MnBi2Te4, Phys. Rev. X, 9 Yan, 2021, Origins of electronic bands in the antiferromagnetic topological insulator MnBi2Te4, Phys. Rev. B, 104, 10.1103/PhysRevB.104.L041102 Estyunin, 2020, Signatures of temperature driven antiferromagnetic transition in the electronic structure of topological insulator MnBi2Te4, APL Mater., 8, 10.1063/1.5142846