Nonlocality Versus Modified Realism
Tóm tắt
Từ khóa
Tài liệu tham khảo
Pusey, M.F., Barrett, J., Rudolph, T.: On the reality of the quantum state. Nat. Phys. 8(6), 476–479 (2012)
Colbeck, R., Renner, R.: Is a system’s wave function in one-to-one correspondence with its elements of reality? Phys. Rev. Lett. 108, 150402 (2012)
Lewis, P.G., Jennings, D., Barrett, J., Rudolph, T.: Distinct quantum states can be compatible with a single state of reality. Phys. Rev. Lett. 109, 50404 (2012)
Aspect, A., Grangier, P., Roger, G.: Experimental realization of Einstein–Podolsky–Rosen–Bohm Gedankenexperiment: a new violation of Bell’s Inequalities. Phys. Rev. Lett. 49, 91–94 (1982)
Aspect, A., Dalibard, J., Roger, G.: Experimental test of Bell’s Inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982)
Christensen, B.G., McCusker, K.T., Altepeter, J.B., Calkins, B., Gerrits, T., Lita, A.E., Miller, A., Shalm, L.K., Zhang, Y., Nam, S.W., Brunner, N.: Detection-loophole-free test of quantum nonlocality, and applications. Phys. Rev. Lett. 111, 130406 (2013)
Hensen, B., Bernien, H., Dréau, A.E., Reiserer, A., Kalb, N., Blok, M.S., Ruitenberg, J., Vermeulen, R.F.L., Schouten, R.N., Abellán, C., Amaya, W., Pruneri, V., Mitchell, M.W., Markham, M., Twitchen, D.J., Elkouss, D., Wehner, S., Taminiau, T.H., Hanson, R.: Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682 (2015)
Giustina, M., et al.: Significant-loophole-free test of bell’s theorem with entangled photons. Phys. Rev. Lett. 115, 250401 (2015)
Shalm, L.K., et al.: Strong loophole-free test of local realism. Phys. Rev. Lett. 115, 250402 (2015)
Page, D.N.: The Einstein–Podolsky–Rosen Physical Reality is completely described by quantum mechanics. Phys. Lett. 91A, 57 (1982)
Bitbol, M.: An analysis of the Einstein–Podolsky–Rosen correlations in terms of events. Phys. Lett. 96A, 57 (1983)
Caves, C.M., Fuchs, C.A., Schack, R.: Quantum probabilities as Bayesian probabilities. Phys. Rev. A 65, 022305 (2002)
Fuchs, C.A.: QBism, the perimeter of Quantum Bayesianism. arXiv: 1003:5209 (2010)
Fuchs, C.A., Mermin, D.N., Schack, R.: An Introduction to QBism with an Application to the Locality of Quantum Mechanics. arXiv: 1311:5253 (2013)
Everett, H.: On the Foundations of Quantum Mechanics, Ph.D. thesis. Princeton University, Department of Physics (1957)
DeWitt, B.S., Graham, N. (eds.): The Many-Worlds Interpretation of Quantum Mechanics. Princeton University Press, Princeton (1973)
Zwirn, H.: Decoherence and the Measurement Problem. In: proceedings of “Frontiers of Fundamental Physics 14”, PoS(FFP14) 223 (2015)
Zwirn, H.: The measurement problem: decoherence and convivial solipsism. Found. Phys. 46, 635–667 (2016)
Zwirn, H.: Delayed choice, complementarity, entanglement and measurement. Phys. Essays 30, 3 (2016)
d’Espagnat, B.: Le Réel voilé, analyse des concepts quantiques. 1994, Fayard. English Transl: Veiled Reality: An Analysis of Quantum Mechanical Concepts. Westview Press, Boulder, Colorado (2003)
Wigner E. P. Interpretation of quantum mechanics. 1976, In: Wheeler, J.A., Zurek, W. (eds.) Quantum Theory and Measurement. Princeton University Press (1983)
Wigner, E.P.: Symetries and Reflections. Indiana University Press, Bloomington (1967)
London, F., Bauer, E.: La théorie de l’observation en mécanique quantique. Hermann (1939)
Einstein, A. to Heitler, W. 1948 translated in Fine, A. Einstein’s Interpretation of Quantum Theory. In: Beller, M., Cohen, R.S., Renn, J. (eds). Einstein in Context. Cambridge University Press (1993)
Vaidman, L. Many Worlds Interpretation of Quantum Mechanics. In: Zalta, E.N. (ed) The Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/entries/qm-manyworlds/ (2014)
Albert D.; Loewer B. Interpreting the Many Worlds: Interpretations. Synthese 82, 195–213 (1988)
Barrett, J.: Everett’s relative-state formulation of quantum mechanics. In: Zalta, E.N. (ed) The Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/entries/qm-everett/ (2014)
Barrett, J.: Everett’s pure wave mechanics and the notion of worlds. Eur. J. Philos. Sci. 1, 277–302 (2011)
Everett, H.: The theory of the universal wave function. 1956. First printed in DeWitt, B.S.; Graham, N. (eds) The Many-Worlds Interpretation of Quantum Mechanics. Princeton University Press, Princeton, pp. 3–140 (1973)
Vaidman, L.: On schizophrenic experiences of the neutron or why we should believe in the many-worlds interpretation of quantum theory. Int. Stud. Philos. Sci. 12, 245–261 (1998)
Wallace, D.: A formal proof of the born rule from decision theoretic assumptions. In: Saunders, S., Barrett, J., Kent, A., Wallace, D. (eds.) Many Worlds? Everett, Quantum Theory and Reality. Oxford University Press, Oxford (2010)
Kent, A.: One World versus Many: The Inadequacy of Everettian Accounts of Evolution, Probability, and Scientific Confirmation. In: Saunders, S., Barrett, J., Kent, A., Wallace, D. (eds.) Many worlds? Everett, quantum theory and reality. Oxford University Press, Oxford (2010)
Barrett, J.: The Quantum Mechanics of Minds and Worlds. Oxford University Press, Oxford (1999)
d’Espagnat, B.: Conceptual Foundations of Quantum Mechanics. Benjamin, New York (1971)
Laudisa, F., Rovelli, C.: Relational quantum mechanics. In: Zalta, E.N. (ed) The Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/entries/qm-relational/ (2008)
Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)
Fine, A.: The Einstein–Podolsky–rosen argument in quantum theory. In: Zalta, E.N. (ed) The Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/entries/qt-epr/ (2013)
Bohm, D.: Quantum Theory. Prentice Hall, New York (1951)