Nonlocal Elastica Model for Sparse Reconstruction
Tóm tắt
In view of the exceptional ability of curvature in connecting missing edges and structures, we propose novel sparse reconstruction models via the Euler’s elastica energy. In particular, we firstly extend the Euler’s elastica regularity into the nonlocal formulation to fully take the advantages of the pattern redundancy and structural similarity in image data. Due to its non-convexity, non-smoothness and nonlinearity, we regard both local and nonlocal elastica functional as the weighted total variation for a good trade-off between the runtime complexity and performance. The splitting techniques and alternating direction method of multipliers (ADMM) are used to achieve efficient algorithms, the convergence of which is also discussed under certain assumptions. The weighting function occurred in our model can be well estimated according to the local approach. Numerical experiments demonstrate that our nonlocal elastica model achieves the state-of-the-art reconstruction results for different sampling patterns and sampling ratios, especially when the sampling rate is extremely low.
Tài liệu tham khảo
Ambrosio, L., Masnou, S.: On a variational problem arising in image reconstruction. Isnm Int. 147, 17–26 (2006)
Arias, P., Caselles, V., Sapiro, G.: A variational framework for non-local image inpainting. In: International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, pp. 345–358 (2009)
Arias, P., Facciolo, G., Caselles, V., Sapiro, G.: A variational framework for exemplar-based image inpainting. Int. J. Comput. Vis. 93(3), 319–347 (2011)
Bae, E., Shi, J., Tai, X.C.: Graph cuts for curvature based image denoising. IEEE Trans. Image Process. 20(5), 1199–1210 (2011)
Bae, E., Tai, X.C., Zhu, W.: Augmented Lagrangian method for an Euler’s elastica based segmentation model that promotes convex contours. Inverse Probl. Imaging 11(1), 1–23 (2017)
Bernstein, M.A., Fain, S.B., Riederer, S.J.: Effect of windowing and zero-filled reconstruction of MRI data on spatial resolution and acquisition strategy. J. Magn. Resonance Imaging 14(3), 270–280 (2001)
Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010)
Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)
Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1–2), 89–97 (2004)
Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)
Chan, T.F., Kang, S.H., Shen, J.: Euler’s elastica and curvature-based inpainting. SIAM J. Appl. Math. 63(2), 564–592 (2002)
Chen, C., Huang, J.: Exploiting the wavelet structure in compressed sensing MRI. Magn. Resonance Imaging 32(10), 1377–1389 (2014)
Chen, Y., Hager, W.W., Yashtini, M., Ye, X., Zhang, H.: Bregman operator splitting with variable stepsize for total variation image reconstruction. Comput. Optim. Appl. 54(2), 317–342 (2013)
Compton, R., Osher, S., Bouchard, L.S.: Hybrid regularization for MRI reconstruction with static field inhomogeneity correction. Inverse Probl. Imaging 7(4), 1215–1233 (2013)
Deng, L.J., Glowinski, R., Tai, X.C.: A new operator splitting method for the Euler elastica model for image smoothing. SIAM J. Imaging Sci. 12(2), 1190–1230 (2019)
Duan, Y., Huang, W., Zhou, J., Chang, H., Zeng, T.: A two-stage image segmentation method using Euler’s elastica regularized Mumford–Shah model. In: 2014 22nd International Conference on Pattern Recognition, pp. 118–123 (2014)
Eksioglu, E.M.: Decoupled algorithm for MRI reconstruction using nonlocal block matching model: BM3D-MRI. J. Math. Imaging Vis. 56(3), 430–440 (2016)
Esedoglu, S., March, R.: Segmentation with depth but without detecting junctions. J. Math. Imaging Vis. 18(1), 7–15 (2003)
Gilboa, G., Osher, S.: Nonlocal linear image regularization and supervised segmentation. Multiscale Model. Simul. 6(2), 595–630 (2007)
Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. SIAM J. Multiscale Model. Simul. 7(3), 1005–1028 (2007)
Goldstein, T., Osher, S.: The split Bregman method for \(L_1\) regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)
Guo, W., Qin, J., Yin, W.: A new detail-preserving regularization scheme. SIAM J. Imaging Sci. 7(2), 1309–1334 (2014)
Guo, W., Yin, W.: Edge guided reconstruction for compressive imaging. SIAM J. Imaging Sci. 5(3), 809–834 (2012)
Haldar, J.P., Diego, H., Zhi-Pei, L.: Compressed-sensing MRI with random encoding. IEEE Trans. Med. Imaging 30(4), 893–903 (2011)
Hammernik, K., Klatzer, T., Kobler, E., Recht, M.P., Sodickson, D.K., Pock, T., Knoll, F.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Resonance Med. 79(6), 3055–3071 (2018)
He, X., Zhu, W., Tai, X.C.: Segmentation by elastica energy with \({L}_1\) and \({L}_2\) curvatures: a performance comparison. Numer. Math. Theory Methods Appl. 12(1), 285–311 (2019)
Huang, J., Yang, F.: Compressed magnetic resonance imaging based on wavelet sparsity and nonlocal total variation. In: 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 968–971 (2012)
Kang, S.H., Zhu, W., Jianhong, J.: Illusory shapes via corner fusion. SIAM J. Imaging Sci. 7(4), 1907–1936 (2014)
Knoll, F., Bredies, K., Pock, T., Stollberger, R.: Second order total generalized variation (TGV) for MRI. Magn. Resonance Med. 65(2), 480–491 (2011)
Liu, J., Zheng, X.: A block nonlocal TV method for image restoration. SIAM J. Imaging Sci. 10(2), 920–941 (2017)
Lou, Y., Zhang, X., Osher, S., Bertozzi, A.: Image recovery via nonlocal operators. J. Sci. Comput. 42(2), 185–197 (2010)
Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Resonance Med. 58(6), 1182–1195 (2007)
Lustig, M., Donoho, D.L., Santos, J.M., Pauly, J.M.: Compressed sensing MRI. IEEE Signal Process. Mag. 25(2), 72–82 (2008)
Masnou, S., Morel, J.M.: Level lines based disocclusion. In: Proceedings 1998 International Conference on Image Processing, pp. 259–263 (1998)
Masnou, S., Morel, J.M.: On a variational theory of image amodal completion. Rendiconti Del Seminario Matematico Della Universita Di Padova 116(4), 211–252 (2005)
Mumford, D.: Elastica and computer vision. In: Algebraic Geometry and its Applications, pp. 491–506 (1994)
Nesterov, Y.E.: A method for solving the convex programming problem with convergence rate \({O}(1/k^{2})\). Dokl. Akad. Nauk SSSR 269(3), 543–547 (1983)
Panić, M., Aelterman, J., Crnojević, V., Pižurica, A.: Sparse recovery in magnetic resonance imaging with a Markov random field prior. IEEE Trans. Med. Imaging 36(10), 2104–2115 (2017)
Qu, X., Guo, D., Ning, B., Hou, Y., Lin, Y., Cai, S., Chen, Z.: Undersampled MRI reconstruction with patch-based directional wavelets. Magn. Resonance Imaging 30(7), 964–977 (2012)
Qu, X., Hou, Y., Lam, F., Guo, D., Zhong, J., Chen, Z.: Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator. Med. Image Anal. 18(6), 843–856 (2014)
Ravishankar, S., Bresler, Y.: MR image reconstruction from highly undersampled k-space data by dictionary learning. IEEE Trans. Med. Imaging 30(5), 1028–1041 (2011)
Romberg, J.: Imaging via compressive sampling. IEEE Signal Process. Mag. 25(2), 14–20 (2008)
Tai, X.C., Hahn, J., Chung, G.J.: A fast algorithm for Euler’s elastica model using augmented Lagrangian method. SIAM J. Imaging Sci. 4(1), 313–344 (2011)
Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: International Conference on Computer Vision, pp. 839–846 (1998)
Wang, W., Li, F., Ng, M.K.: Structural similarity based nonlocal variational models for image restoration. IEEE Trans. Image Process. 28(9), 4260–4272 (2019)
Wu, C., Tai, X.C.: Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models. SIAM J. Imaging Sci. 3(3), 300–339 (2010)
Yang, G., Yu, S., Dong, H., Slabaugh, G., Dragotti, P.L., Ye, X., Liu, F., Arridge, S., Keegan, J., Guo, Y.: Dagan: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans. Med. Imaging 37(6), 1310–1321 (2018)
Yang, Y., Sun, J., Li, H., Xu, Z.: Deep ADMM-Net for compressive sensing MRI. Advances in Neural Information Processing Systems pp. 10–18 (2016)
Yaroslavsky, L.P.: Digital Picture Processing: An Introduction. Springer, Berlin (1985)
Yashtini, M., Kang, S.H.: A fast relaxed normal two split method and an effective weighted TV approach for Euler’s elastica image inpainting. SIAM J. Imaging Sci. 9(4), 1552–1581 (2016)
Zhang, X., Burger, M., Bresson, X., Osher, S.: Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM J. Imaging Sci. 3(3), 253–276 (2010)
Zhili, Y., Mathews, J.: Nonlocal regularization of inverse problems: a unified variational framework. IEEE Trans. Image Process. 22(8), 3192–3203 (2013)
Zhu, W., Chan, T., Esedoglu, S.: Segmentation with depth: a level set approach. SIAM J. Sci. Comput. 28(5), 1957–1973 (2006)
Zhu, W., Tai, X.C., Chan, T.: Image segmentation using Euler’s elastica as the regularization. J. Sci. Comput. 57(2), 414–438 (2013)