Nonlocal Cubic-Quintic Nonlinear Schrödinger Equation: Symmetry Breaking Solitons and Its Trajectory Rotation

Allerton Press - Tập 30 - Trang 387-396 - 2023
P. Sakthivinayagam1
1Physics Department, PSG College of Arts and Science (Autonomous), Civil Aerodrome Post, Coimbatore, Tamilnadu, India

Tóm tắt

Using two analytical methods, we derive exact and more general solutions of the nonlocal nonlinear Schrödinger equation with nonlocal cubic and nonlocal quintic terms. In the first method, equations are analyzed, and some of their mathematical and physical properties are inferred, which are then used to derive the exact stationary solutions. In the second method, we demonstrate the Darboux transformation method and construct exact and more general soliton solutions for the nonlocal NLS equation with nonlocal cubic and quintic terms. We reconsider the collisional dynamics of the nonlocal NLS equation and observe that apart from intensity redistribution in the interaction of bright and dark solitons, one also witnesses a rotation of the trajectories of the solitons. The angle of rotation can be varied by suitably manipulating the self-phase-modulation (SPM) or cross-phase-modulation (XPM) parameters and also spectral parameters. The angle of rotation of the solitons arises due to the excess energy that is injected into the dynamical system through SPM and XPM. We also notice the parallel traveling solitons due to the rotation in the soliton trajectories. These observations which exclude the quantum superposition for the field vectors may have wider ramifications in nonlinear optics, Bose–Einstein condensates, and left- and right-handed metamaterials.

Tài liệu tham khảo

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wiemann, and E. A. Cornell, “Observation of Bose–Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995). https://doi.org/10.1126/science.269.5221.198 F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, “Theory of Bose–Einstein condensation in trapped gases,” Rev. Mod. Phys. 71 (3), 463–512 (1999). https://doi.org/10.1103/RevModPhys.71.463 C. Sulem and P. L. Sulem, The Nonlinear Schrödinger Equation (Springer, New York, 1999). G. Theocharis, P. Schmelcher, P. G. Kevrekidis, and D. J. Frantzeskakis, “Matter-wave solitons of collisionally inhomogeneous condensates,” Phys. Rev. A 72 (3), 033614 (2005). https://doi.org/10.1103/PhysRevA.72.033614 D. S. Wang, D. J. Zhang, and J. Yang, “Integrable properties of the general coupled nonlinear Schrödinger equations,” J. Math. Phys. 51 (2), 023510 (2010). https://doi.org/10.1063/1.3290736 D.-S. Wang, X.-H. Hu, J. Hu, and W. M. Liu, “Quantized quasi-two-dimensional Bose–Einstein condensates with spatially modulated nonlinearity,” Phys. Rev. A 81 (2), 025604 (2010). https://doi.org/10.1103/PhysRevA.81.025604 V. E. Zakharov, “Stability of periodic waves of finite amplitude on the surface of a deep fluid,” J. Appl. Mech. Tech. Phys. 9, 190–194 (1968). https://doi.org/10.1007/BF00913182 L. P. Pitaevskii and S. Stringari, Bose–Einstein Condensation (Oxford Univ. Press, Oxford, 2003). Y. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, New York, 2003). M. J. Ablowitz and Z. H. Musslimani, “Integrable nonlocal nonlinear Schrödinger equation,” Phys. Rev. Lett. 110 (6), 064105 (2013). https://doi.org/10.1103/PhysRevLett.110.064105 M. Li and T. Xu, Dark and antidark soliton interactions in the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential.” Phys. Rev. E 91 (3), 033202 (2015). https://doi.org/10.1103/PhysRevE.91.033202 M. J. Ablowitz and Z. H. Musslimani, “Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation,” Nonlinearity 29 (3), 915–946 (2016). https://doi.org/10.1088/0951-7715/29/3/915 M. J. Ablowitz and Z. H. Musslimani, “Integrable discrete PT symmetric model,” Phys. Rev. E 90 (3), 032912 (2014). https://doi.org/10.1103/PhysRevE.90.032912 A. C. Tam and W. Happer, “Long-range interactions between cw self-focused laser beams in an atomic vapor,” Phys Rev Lett. 38 (6), 278–281 (1977). https://doi.org/10.1103/PhysRevLett.38.278 D. Suter and T. Blasberg, “Stabilization of transverse solitary waves by a nonlocal response of the nonlinear medium,” Phys Rev A 48 (6), 4583–4587 (1993). https://doi.org/10.1103/PhysRevA.48.4583 K. Góral, K. Rza̧żewski, and T. Pfau, “Bose–Einstein condensation with magnetic dipole–dipole forces,” Phys Rev A 61 (5), 051601(R) (2000). https://doi.org/10.1103/PhysRevA.61.051601 C. Conti, M. Peccianti, and G. Assanto, “Observation of optical spatial solitons in a highly nonlocal medium,” Phys Rev Lett. 92 (11), 113902 (2004). https://doi.org/10.1103/PhysRevLett.92.113902 R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and Z. H. Musslimani, “Theory of coupled optical PT-symmetric structures,” Opt. Lett. 32 (17), 2632–2634 (2007). https://doi.org/10.1364/OL.32.002632 K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, “Beam dynamics in PT symmetric optical lattices,” Phys Rev Lett. 100 (10), 103904 (2008). https://doi.org/10.1103/PhysRevLett.100.103904 C. E. Ruter, K. G. Makris, R. El-Ganainy, D. N. Christo-doulides, M. Segev, and D. Kip, “Observation of parity-time symmetry in optics,” Nat. Phys. 6, 192 (2010). https://doi.org/10.1038/nphys1515 A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488, 167–171 (2012). https://doi.org/10.1038/nature11298 A. Regensburger, M.-A. Miri, C. Bersch, J. Näger, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Observation of defect states in PT-symmetric optical lattices,” Phys. Rev. Lett. 110 (22), 223902 (2013). https://doi.org/10.1103/PhysRevLett.110.223902 A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “Observation of defect states in PT-symmetric optical lattices,” Phys. Rev. Lett. 103 (9), 093902 (2009). https://doi.org/10.1103/PhysRevLett.103.093902 S. Longhi, “Bloch oscillations in complex crystals with PT symmetry,” Phys. Rev. Lett. 103 (12), 123601 (2009). https://doi.org/10.1103/PhysRevLett.103.123601 Y. D. Chong, L. Ge, and A. D. Stone, “PT-symmetry breaking and laser-absorber modes in optical scattering systems,” Phys. Rev. Lett. 106 (9), 093902 (2011). https://doi.org/10.1103/PhysRevLett.106.093902 S. Longhi, “PT-symmetric laser absorber,” Phys. Rev. A 82 (3), 031801 (2010). https://doi.org/10.1103/PhysRevA.82.031801 H. Benisty, A. Degiron, A. Lupu, A. De Lustrac, S. Chénais, S. Forget, M. Besbes, G. Barbillon, A. Bruyant, S. Blaize, and G. Lérondel, “Implementation of PT symmetric devices using plasmonics: Principle and applications,” Opt Express 19 (19), 18004–18019 (2011). https://doi.org/10.1364/OE.19.018004 M. Kulishov, J. M. Laniel, N. Bélanger, J. Azaña, and D. V. Plant, “Nonreciprocal waveguide Bragg gratings,” Opt Express 13 (8), 3068–3078 (2005). https://doi.org/10.1364/opex.13.003068 Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106 (21), 213901 (2011). https://doi.org/10.1103/PhysRevLett.106.213901 J. Sheng, M.-A. Miri, D. N. Christodoulides, and M. Xiao, “PT-symmetric optical potentials in a coherent atomic medium,” Phys. Rev. A 88 (4), 041803(R) (2013). https://doi.org/10.1103/PhysRevA.88.041803 V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons (Springer, Berlin, 1991). V. Ramesh Kumar, R. Radha and M. Wadati, “Phase engineering and solitons of Bose–Einstein condensates with two- and three-body interactions,” J. Phys. Soc. Jpn. 79 (7), 074005 (2010). https://doi.org/10.1143/JPSJ.79.074005 S. Loomba, R. Pal, and C. N. Kumar, “Bright solitons of the nonautonomous cubic-quintic nonlinear Schrö-dinger equation with sign-reversal nonlinearity,” Phys. Rev. A 92 (3), 033811 (2015). https://doi.org/10.1103/PhysRevA.92.033811 U. Al Khawaja and H. Bahlouli, “Integrability conditions and solitonic solutions of the nonlinear Schrödinger equation with generalized dual-power nonlinearities, PT-symmetric potentials, and space- and time-dependent coefficients,” Commun. Nonlinear Sci. Numer. Simul. 69, 248–260 (2019). https://doi.org/10.1016/j.cnsns.2018.07.015 R. Radha and P. S. Vinayagam, “Stabilization of matter wave solitons in weakly coupled atomic condensates,” Phys. Lett. A 376 (8–9), 944–949 (2012). https://doi.org/10.1016/j.physleta.2012.01.029 R. Radha, P. S. Vinayagam, and K. Porsezian, “Soliton dynamics of spatially coupled vector BECs,” Rom. Rep. Phys. 66 (2), 427–442 (2014). http://rrp.infim.ro/ 2014_66_2/A15.pdf R. Radha and P. S.Vinayagam, “An analytical window into the world of ultracold atoms,” Rom. Rep. Phys. 67 (1), 89–142 (2015). http://www.rrp.infim.ro/2015_67_1/A5.pdf U. Al. Khawaja, P. S. Vinayagam, and S. M. Al-Marzoug, “Enhanced mobility of discrete solitons in anisotropic two-dimensional waveguide arrays with modulated separations,” Phys. Rev. A 97 (2), 023820 (2018). https://doi.org/10.1103/PhysRevA.97.023820 P. S. Vinayagam, A. Javed, U. and Al Khawaja, “Stable discrete soliton molecules in two-dimensional waveguide arrays,” Phys. Rev. A 98 (6), 063839 (2018). https://doi.org/10.1103/PhysRevA.98.063839 R. Radha, P. S. Vinayagam, H. J. Shin, and K. Porsezian, “Spatiotemporal binary interaction and designer quasi-particle condensates,” Chin. Phys. B 23 (3), 034214 (2014). https://doi.org/10.1088/1674-1056/23/3/034214 P. S. Vinayagam, R. Radha, S. Bhuvaneswari, R. Ravisankar, and P. Muruganandam, “Bright soliton dynamics in spin orbit-Rabi coupled Bose–Einstein condensates,” Commun. Nonlinear Sci. Numer. Simul. 50, 68–76 (2017). https://doi.org/10.1016/j.cnsns.2017.02.012 H. Chaachoua Sameut, Sakthivinayagam Pattu, U. Al Khawaja, M. Benarous, and H. Belkroukra, “Peregrine soliton management of breathers in two coupled Gross–Pitaevskii equations with external potential,” Phys. Wave. Phenom. 28 (3), 305–312 (2020). https://doi.org/10.3103/S1541308X20030036 P. Sakthivinayagam and J. Chen, “PT symmetric cubic-quintic nonlinear Schrödinger equation with dual power nonlinearities and its solitonic solutions,” Optik 217, 164665 (2020). https://doi.org/10.1016/j.ijleo.2020.164665