Nonlocal Constrained Value Problems for a Linear Peridynamic Navier Equation

Journal of Elasticity - Tập 116 Số 1 - Trang 27-51 - 2014
Tadele Mengesha1, Qiang Du2
1Dept. of Mathematics, Pennsylvania State University, University Park, USA
2Pennsylvania State Univ#TAB#

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aguiar, A., Fosdick, R.: A constitutive model for a linearly elastic peridynamic body. Math. Mech. Solids (2013). doi: 10.1177/1081286512472092

Aksoylu, B., Mengesha, T.: Results on nonlocal boundary value problems. Numer. Funct. Anal. Optim. 31, 1301–1317 (2010)

Alali, B., Lipton, R.: Multiscale analysis of heterogeneous media in the peridynamic formulation. J. Elast. 106, 71–103 (2012)

Bourgain, J., Brézis, H., Mironescu, P.: Another look at Sobolev spaces. In: Menaldi, J.L., Rofman, E., Sulem, A. (eds.) Optimal Control and Partial Differential Equations, pp. 439–455. IOS Press, Amsterdam (2001). A volume in honour of A. Benssoussan’s 60th birthday

Du, Q., Gunzburger, M., Lehoucq, R., Zhou, K.: Analysis of the volume-constrained peridynamic Navier equation of linear elasticity. J. Elast. (2013). doi: 10.1007/s10659-012-9418-x

Du, Q., Gunzburger, M., Lehoucq, R., Zhou, K.: A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws. Math. Models Methods Appl. Sci. 23, 493–540 (2013)

Du, Q., Gunzburger, M., Lehoucq, R., Zhu, K.: Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev. 54, 667–696 (2012)

Du, Q., Zhou, K.: Mathematical analysis for the peridynamic nonlocal continuum theory. Math. Mod. Numer. Anal. 45, 217–234 (2011)

Dyda, B.: A fractional order Hardy inequality. Ill. J. Math. 48, 575–588 (2004)

Emmrich, E., Weckner, O.: The peridynamic equation and its spatial discretization. Math. Model. Anal. 12, 17–27 (2007)

Emmrich, E., Weckner, O.: On the well-posedness of the linear peridynamic model and its convergence towards the Navier equation of linear elasticity. Commun. Math. Sci. 5, 851–864 (2007)

Kaleta, K.: Spectral gap lower bound for the one-dimensional fractional Schrodinger operator in the interval. Stud. Math. 209, 267–287 (2012)

Mengesha, T.: Non-local Korn-type characterization of Sobolev vector fields. Commun. Contemp. Math. 14, 1250028 (2012)

Mengesha, T., Du, Q.: Analysis of the scaler peridynamic model with sign changing kernel. Discrete Contin. Dyn. Syst. 18, 1415–1437 (2013)

Mengesha, T., Du, Q.: The bond-based peridynamic system with Dirichlet-type volume constraint. Proc. R. Soc. Edinburgh, Sect. A (2013, to appear)

Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000)

Silling, S.A.: Linearized theory of peridynamic states. J. Elast. 99, 85–111 (2010)

Silling, S.A., Epton, M., Weckner, O., Xu, J., Askari, E.: Peridynamic states and constitutive modeling. J. Elast. 88, 151–184 (2007)

Silling, S.A., Lehoucq, R.B.: Convergence of peridynamics to classical elasticity theory. J. Elast. 93, 13–37 (2008)

Silling, S., Lehoucq, R.: Peridynamic theory of solid mechanics. Adv. Appl. Mech. 44, 73–168 (2010)

Silling, S.A., Weckner, O., Askari, E., Bobaru, F.: Crack nucleation in a peridynamic solid. Int. J. Fract. 162, 219–227 (2010)

Ponce, A.: An estimate in the spirit of Poincare’s inequality. J. Eur. Math. Soc. 6, 1–15 (2004)

Seleson, P., Parks, M.: On the role of the influence function in the peridynamic theory. Int. J. Multiscale Comput. Eng. 9, 689–706 (2011)

Zhou, K., Du, Q.: Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary. SIAM J. Numer. Anal. 48, 1759–1780 (2010)