Nonlinear water diffusion in nonsaturated concrete
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abrams, M.S., andGustaferro, A.H.—Fire endurance of concrete slabs as influenced by thickness, aggregate type, and moisture, Journal of the Portland Cement Association Research and Development Laboratoiries, Vol. 10, No. 2, May 1968, 9–24 (PCA Bulletin 223).
Abrams, M.S., andMonfore, G.E.—Application of a small probe-type relative humidity gage to research on fire resistance of concrete, Journal of the Portland Cement Association Research and Development Laboratories, Vol. 7, No. 3, Sept. 1965, 2–12 (PCA Bulletin 186).
Abrams, M.S., andOrals, D.L.—Concrete drying methods and their effect on fire resistance, in: Moisture of materials in relation to fire tests, STP No. 385, 1965, 52–73, publ. by American Society for Testing Materials (PCA Bulletin 181).
Aleksandrovskii, S.V.—On thermal and hygrometric properties of concrete related to heat and moisture exchange (in Russian), Akad. Stroit. i Arkhitektury USSR (Moscow), Nauchno-Issled. Inst. Betona i Zhelezobetona (NIIZhB), Issled. Svoistv Betona, Zhelezob. Konstr., Trudy Inst., No. 4, 1959, 184–214.
Aleksandrovskii, S.V.—Analysis of plain and reinforced concrete structures for temperature and moisture effects (with account of creep) (in Russian), Stroyizdat, Moscow, 1966.
Bažant, Z.P.—Constitutive equation for concrete creep and shrinkage based on thermodynamics of multiphase systems, Materials and Structures (RILEM), Vol. 3, No. 13, 1970, pp. 3–36.
Bažant, Z.P.—Delayed thermal dilatations of cement paste and concrete due to mass transport, Nuclear Engineering and Design, Vol. 14, 1970, 308–318.
Bažant, Z.P.—Thermodynamic theory of deformations of concrete with explanation of drying creep, American Concrete Institute Symp. on Designing for Effects of Creep, Shrinkage and Temperature, SP 27, p. 411, Detroit 1971; see alsoThermodynamic theory of concrete deformation at variable temperature and humidity, Report No. 69-11, Div. of Struct. Engineering and Struct. Mech., University of California, Berkeley, August 1969.
Bažant, Z.P., andNajjar, L.J.—Drying of concrete as a nonlinear diffusion problem, Cement and Concrete Research, An International Journal, Vol. 1 (1971), 461–473.
Brophy, J.M., Rose, R.M., andWulff, J.—The thermodynamics of structure, Vol. II of The Structure and Properties of Materials, ed. by Wulff, J. Wiley, New York, 1964.
Brunauer, S., Emmett, P.H., andTeller, E. —Adsorption of gases in multimolecular layers, J. Amer. Chemical Soc., Vol. 60, 1938, 309–319.
Carlson, R.W.—Drying shrinkage of large concrete members, American Concrete Institute Journal, January–February, 1937, Proc. Vol. 33, p. 327.
Carlson, R.W., andDavis, R.E.—Discussion on the significance of pore pressure in hydraulic structures, Proc. ASCE, Vol. 74, 1532–1536, 1948.
Carslaw, H.S., andJaeger, J.C.—Conduction of Heat in Solids, Oxford, 1959, 2nd ed.
Copeland, L.E., andBragg, R.H.—Selfdesiccation in portland cement pastes, Proc., Amer. Soc. for Testing Materials, No. 204, February 1955 (PCA Bulletin 52).
Copeland, L.E., Kantro, D.L., andVerbeck, G.—Chemistry of hydration of portland cement, in: Chemistry of Cement, Proc. 4th Intern. Symp., Washington, D.C. 1960, National Bureau of Standards, Monograph 43, Vol. I, Paper IV-3, 429–465 (PCA Bulletin 153).
Cottrell, A.H.—The mechanical properties of matter. John Wiley and Sons, New York, 1964.
Crank, J.—Mathematics of diffusion, Oxford University Press, London 1957.
Guggenheim, E.A.—Thermodynamics, classical and statistical, in: Encyclopedia of Physics, ed. by S. Flügge, Vol. III/2, Principles of Thermodynamics and Statistics, Springer, Berlin, 1959.
Hancox, N.L.—A note on the form of the rate of drying curve for cement paste and its use in analyzing the drying behavior of this material, RILEM Bulletin, No. 36, Sept. 1967, 197–201.
Hanson, J.A.—Effects of curing and drying environments on splitting tensile strength, American Concrete Institute Journal, Vol. 65, July 1968, 535–543 (PCA Bulletin D141).
Harmathy, T.Z.—Simultaneous moisture and heat transfer in porous systems with particular reference to drying, Industrial and Engng. Chemistry Fundamentals, Vol. 8, 92–103, February 1969, Amer. Chem. Soc.
Helmuth, R.A., andTurk, D.H.—The reversible and irreversible drying shrinkage of hardened portland cement and tricalcium silicate paste, Journal of the Portland Cement Association Research and Development Laboratories, Vol. 9, No. 2, May 1967, 8–21 (PCA Bulletin 215).
Hilsdorf, H.K.—A method to estimate the water content of concrete shields, Nuclear Engineering and Design, Vol. 6, 1967, 251–263.
Hughes, B.P., Lowe, I.R.G., andWalker, J. —The diffusion of water in concrete at temeperatures between 50 and 95 °C, British Journal of Applied Physics, Vol. 17, 1966, 1545–1552.
Jensen, B.M.—The effect of temperature on the thermal dilatation of concrete conditioned to a given humidity, Graduate Student Research Report No. 416, Div. of Struct. Engineering and Struct. Mech., University of California, Berkeley, July 1969.
Kasi, S.S.H., andPihlajavaara, S.E.—An approximate solution of a quasi-linear diffusion problem, Publ. No. 153, The State Institute for Technical Research, Helsinki, 1969.
Lowe, I.R.G., Hugues, B.P. andWalker, J.—The diffusion of water in concrete at 30 °C, Cement and Concrete Research, vol. 1, 547–557, 1971.
Murata, J.—Studies on the permeability of concrete, RILEM Bulletin (Paris), No. 29, December 1965, 47–54.
Pihlajavaara, S.E.—Introductory bibliography for research on drying of concrete, The State Institute for Technical Research, Helsinki, 1964 (71 pp.).
Pihlajavaara, S.E., andVäisänen, M.—Numerical solution of diffusion equation with diffusivity concentration dependent, Publ. No. 87, State Institute for Technical Research, Helsinki, 1965.
Pihlajavaara, S.E.—On the main features and methods of investigation of drying and related phenomena in concrete, Ph. D. Thesis, Publ. No. 100, State Institute for Technical Research, Helsinki, 1965.
Pihlajavaara, S.E.—A review of the research on drying of concrete, RILEM Bulletin (Paris), No. 27, June 1965, 61–63.
Pickett, G.—The effect of change in moisture content on the creep of concrete under a sustained load, American Concrete Institute Journal, Proc. Vol. 36, February 1942, 333–355; see alsoShrinkage stresses in concrete, American Concrete Institute Journal, Proc. Vol. 42, January–February 1946.
Powers, T.C., andBrownyard, T.L.—Studies of the physical properties of hardened portland cement paste, American Concrete Institute Journal, 1946, pp. 101–132, 249–336, 469–504, 1947, pp. 549–602, 669–712, 845–880, 933–992 (PCA Bulletin No 22).
Powers, T.C.—Hydraulic pressure in concrete, Proc. ASCE, Paper No. 742, Vol. 81, July 1955, 742–745 (reprinted as PCA Bulletin 63).
Powers, T.C., Copeland, L.E., Hayes, J.C., andMann, H.M.—Permeability of portland cement paste, American Concrete Institute Journal, Vol. 51, November 1954, 285–298 (PCA Bulletin 53).
Powers, T.C., Copeland, L.E., andMann, H.M. —Capillary continuity and discontinuity in cement paste, Journal of the Portland Cement Association Research and Development Laboratories, Vol. 1, No. 2, May 1959, 38–48 (PCA Bulletin 110).
Powers, T.C.—A discussion of cement hydration in relation to the curing of concrete, Proc. of the Highway Research Board, 27, 1947, 178–188 (PCA Bulletin No. 25).
Von Rosenberg, D.U.—Methods for the numerical solution of partial differential equations, ed. Bellman, R., American Elsevier, 1969.
Wierig, H.J.—Die Wasserdampfdurchlässigkeit von Zementmörtel und Beton, Zement-Kalk-Gips, November 9, 1965, 471–482.