Nonlinear p(x)-Elliptic Equations in General Domains
Tóm tắt
Từ khóa
Tài liệu tham khảo
Azroul, E., Hjiaj, H., Touzani, A.: Existence and regularity of entropy solutions for strongly nonlinear $$ p(x)$$-elliptic equations. Electron. J. Differ. Equ. 68, 1–27 (2013)
Benboubker, M.B., Chrayteh, H., El Moumni, M., Hjiaj, H.: Entropy and renormalized solutions for nonlinear elliptic problem involving variable exponent and measure data. Acta Math. Sin. (English series) 31(1), 151–169 (2015)
Yazough, C., Azroul, E., Redwane, H.: Existence of solutions for some nonlinear elliptic unilateral problems with measure data. Electron. J. Qual. Theory Difer. Equ. 43, 1–21 (2013)
Eleuteri, M., Marcellini, P., Mascolo, E.: Lipschitz continuity for functionals with variable exponents. Rend. Lincei Mat. Appl. 27, 61–87 (2016)
Ferone, V., Murat, F.: Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small. Nonlinear Anal. Methods 42(7), Ser. A Theory 1309–1326, 18 (2000)
Boccardo, L., Murat, F., Puel, J.-P.: $$L^{\infty }$$ estimate for some nonlinear elliptic partial differential equations and application to an existence result. SIAM J. Math. Anal. (2) 23, 326–333 (1992). (338)
Marcellini, P.: Regularity and existence of solutions of elliptic equations with $$p$$–$$q$$-growth conditions. J. Differ. Equ. 90, 1–30 (1991)
Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad. Nauk SSSR Ser. Mat. 50, 675–710 (1986)
Mingione, G.: Regularity of minima: an invitation to the dark side of the calculus of variations. Appl. Math. 51, 355–426 (2006)
Cupini, G., Marcellini, P., Mascolo, E.: Existence and regularity for elliptic equations under $$p; q$$-growth. Adv. Differ. Equ. 19, 693–724 (2014)
Radulescu, V., Zhang, Q.: Double phase anisotropic variational problems and combined effects of reaction and absorption terms. J. Math. Pures Appl. 118, 159–203 (2018)
Marcellini, P.: Regularity of minimizers of integrals in the calculus of variations with non standard growth conditions. Arch. Rational Mech. Anal. 105, 267284 (1989)
Marcellini, P.: Regularity for elliptic equations with general growth conditions. J. Differ. Equ. 105, 296333 (1993)
Marcellini, P.: Regularity for some scalar variational problems under general growth conditions. J. Optim. Theory Appl. 90(1), 161181 (1996)
Zhang, Q.: Existence of radial solutions for $$p(x)$$-Laplacian equations in $$R^{N}$$. J. Math. Anal. Appl. 315, 506–516 (2006)
Duan, L., Huang, L.: Infinitely many solutions for a class of $$p(x)$$-Laplacian equations in $${\mathbb{R}}^{N}$$. Electron. J. Qual. Theory Differ. Equ. 28, 1–13 (2014)
Drábek, P., Kufner, A., Nicolosi, F.: de Gruyter Series in Nonlinear Analysis and Applications. Quasilinear elliptic equations with degenerations and singularities, vol. 5. Walter de Gruyter & Co., Berlin (1997)
Webb, J.R.L.: Boundary value problems for strongly nonlinear elliptic equations. J. Lond. Math. Soc. 2(21), 123–132 (1980)
Edmunds, D.E., Webb, J.R.L.: Quasilinear elliptic problems in unbounded domains. Proc. R. Soc. (London) Ser. A 334, 397–410 (1973)
Dall’Aglio, A., Giachetti, D., Puel, J.-P.: Nonlinear elliptic equations with natural growth in general domains. Ann. Mat. 181, 407–426 (2002)
Dall’Aglio, A., Giachetti, D., Puel, J.-P.: Nonlinear parabolic equations with natural growth in general domains. Boll. Unione Mat. Ital. Sez. B 8, 653–683 (2005)
Dall’Aglio, A., De Cicco, V., Giachetti, D., Puel, J.-P.: Existence of solutions for nonlinear elliptic equations in unbounded domains. Nonlinear Differ. Equ. Appl. 11, 431–450 (2004)
Stampacchia, G.: Equations elliptiques du second ordre à coefficients discontinus. In: Séminaire de Mathématiques Supérieures, No. 16. Les Presses de l’Université de Montréal, Montréal (1966)
Fan, X.L., Zhao, D.: On the generalized Orlicz–Sobolev space $$W^{k, p(x)}(\Omega )$$. J. Gansu Educ. Coll. 12(1), 1–6 (1998)
Zhao, D., Qiang, W.J., Fan, X.L.: On generalized Orlicz spaces $$L^{p(x)}(\Omega )$$. J. Gansu Sci. 9(2), 1–7 (1997)
Harjulehto, P., Hästö, P.: Sobolev inequalities for variable exponents attaining the values $$1$$ and $$n$$. Publ. Mat. 52(2), 347–363 (2008)
Diening, L., Harjulehto, P., Hästö, P., Råžička, M.: Lecture Notes in Mathematics. Lebesgue and Sobolev spaces with variable exponents, vol. 2017. Springer, Heidelberg (2011)
Lions, J.L.: Quelques methodes de résolution des problèmes aux limites non linéaires. Dunod et Gauthiers-Villars, Paris (1969)