Nonlinear p(x)-Elliptic Equations in General Domains

Differential Equations and Dynamical Systems - Tập 30 Số 3 - Trang 607-630 - 2022
Elhoussine Azroul1, Moussa Khouakhi1, Chihab Yazough2
1Laboratory of Mathematical Analysis and Applications, Faculty of Sciences, Dhar El Mahraz Sidi Mohamed Ben Abdellah University, Atlas Fes, Morocco
2LSI, Faculty of Polydisciplinary Taza, Sidi Mohamed Ben Abdellah University, Fes, Morocco

Tóm tắt

Từ khóa


Tài liệu tham khảo

Azroul, E., Hjiaj, H., Touzani, A.: Existence and regularity of entropy solutions for strongly nonlinear $$ p(x)$$-elliptic equations. Electron. J. Differ. Equ. 68, 1–27 (2013)

Benboubker, M.B., Chrayteh, H., El Moumni, M., Hjiaj, H.: Entropy and renormalized solutions for nonlinear elliptic problem involving variable exponent and measure data. Acta Math. Sin. (English series) 31(1), 151–169 (2015)

Yazough, C., Azroul, E., Redwane, H.: Existence of solutions for some nonlinear elliptic unilateral problems with measure data. Electron. J. Qual. Theory Difer. Equ. 43, 1–21 (2013)

Eleuteri, M., Marcellini, P., Mascolo, E.: Lipschitz continuity for functionals with variable exponents. Rend. Lincei Mat. Appl. 27, 61–87 (2016)

Ferone, V., Murat, F.: Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small. Nonlinear Anal. Methods 42(7), Ser. A Theory 1309–1326, 18 (2000)

Boccardo, L., Murat, F., Puel, J.-P.: $$L^{\infty }$$ estimate for some nonlinear elliptic partial differential equations and application to an existence result. SIAM J. Math. Anal. (2) 23, 326–333 (1992). (338)

Marcellini, P.: Regularity and existence of solutions of elliptic equations with $$p$$–$$q$$-growth conditions. J. Differ. Equ. 90, 1–30 (1991)

Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad. Nauk SSSR Ser. Mat. 50, 675–710 (1986)

Mingione, G.: Regularity of minima: an invitation to the dark side of the calculus of variations. Appl. Math. 51, 355–426 (2006)

Cupini, G., Marcellini, P., Mascolo, E.: Existence and regularity for elliptic equations under $$p; q$$-growth. Adv. Differ. Equ. 19, 693–724 (2014)

Radulescu, V., Zhang, Q.: Double phase anisotropic variational problems and combined effects of reaction and absorption terms. J. Math. Pures Appl. 118, 159–203 (2018)

Marcellini, P.: Regularity of minimizers of integrals in the calculus of variations with non standard growth conditions. Arch. Rational Mech. Anal. 105, 267284 (1989)

Marcellini, P.: Regularity for elliptic equations with general growth conditions. J. Differ. Equ. 105, 296333 (1993)

Marcellini, P.: Regularity for some scalar variational problems under general growth conditions. J. Optim. Theory Appl. 90(1), 161181 (1996)

Zhang, Q.: Existence of radial solutions for $$p(x)$$-Laplacian equations in $$R^{N}$$. J. Math. Anal. Appl. 315, 506–516 (2006)

Duan, L., Huang, L.: Infinitely many solutions for a class of $$p(x)$$-Laplacian equations in $${\mathbb{R}}^{N}$$. Electron. J. Qual. Theory Differ. Equ. 28, 1–13 (2014)

Drábek, P., Kufner, A., Nicolosi, F.: de Gruyter Series in Nonlinear Analysis and Applications. Quasilinear elliptic equations with degenerations and singularities, vol. 5. Walter de Gruyter & Co., Berlin (1997)

Webb, J.R.L.: Boundary value problems for strongly nonlinear elliptic equations. J. Lond. Math. Soc. 2(21), 123–132 (1980)

Edmunds, D.E., Webb, J.R.L.: Quasilinear elliptic problems in unbounded domains. Proc. R. Soc. (London) Ser. A 334, 397–410 (1973)

Dall’Aglio, A., Giachetti, D., Puel, J.-P.: Nonlinear elliptic equations with natural growth in general domains. Ann. Mat. 181, 407–426 (2002)

Dall’Aglio, A., Giachetti, D., Puel, J.-P.: Nonlinear parabolic equations with natural growth in general domains. Boll. Unione Mat. Ital. Sez. B 8, 653–683 (2005)

Dall’Aglio, A., De Cicco, V., Giachetti, D., Puel, J.-P.: Existence of solutions for nonlinear elliptic equations in unbounded domains. Nonlinear Differ. Equ. Appl. 11, 431–450 (2004)

Stampacchia, G.: Equations elliptiques du second ordre à coefficients discontinus. In: Séminaire de Mathématiques Supérieures, No. 16. Les Presses de l’Université de Montréal, Montréal (1966)

Fan, X.L., Zhao, D.: On the generalized Orlicz–Sobolev space $$W^{k, p(x)}(\Omega )$$. J. Gansu Educ. Coll. 12(1), 1–6 (1998)

Zhao, D., Qiang, W.J., Fan, X.L.: On generalized Orlicz spaces $$L^{p(x)}(\Omega )$$. J. Gansu Sci. 9(2), 1–7 (1997)

Harjulehto, P., Hästö, P.: Sobolev inequalities for variable exponents attaining the values $$1$$ and $$n$$. Publ. Mat. 52(2), 347–363 (2008)

Diening, L., Harjulehto, P., Hästö, P., Råžička, M.: Lecture Notes in Mathematics. Lebesgue and Sobolev spaces with variable exponents, vol. 2017. Springer, Heidelberg (2011)

Lions, J.L.: Quelques methodes de résolution des problèmes aux limites non linéaires. Dunod et Gauthiers-Villars, Paris (1969)