Nonlinear fractional Schrödinger equation on the half-Line

Gerardo Huaroto1
1Instituto de Matemática, Universidade Federal de Alagoas, Maceió, Brazil

Tóm tắt

This paper study the local-in-time existence of solution for the nonlinear fractional Schrödinger equation with Levy indices $$1<\alpha <2$$ on the half-line $$i\partial _t u+(-\Delta ^+)^{\alpha /2}u+\lambda u|u|^{p-1}=0$$ , for measurable initial data and inhomogeneous Dirichlet boundary condition. The mathematical analysis developed in this paper combine two different aspects, the Riemann–Liouville fractional by Colliander and Kenig (Commun Partial Differ Equ 27:2187-2266, 2002) and Fourier restriction method of Sobolev space by Holmer (Differ Integr Equ 18:647-668, 2005) and Holmer (Uniform Estimates for the Zakharov System and the Initial-boundary Value Problem for the Korteweg-de Vries and Nonlinear Schrödinger Equations, 2004).

Tài liệu tham khảo

Bertoin, J.: Lévy processes, volume 121 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1996) Brézis, H., Gallouet, T.: Nonlinear Schrödinger evolution equations. Nonlinear Anal. 4, 677–681 (1980) Colliander, J.E., Kenig, C.E.: The generalized Korteweg-de Vries equation on the half line. Comm. Partial Differ. Equ. 27, 2187–2266 (2002) Caffarelli, L.A., Stinga, P.R.: Fractional elliptic equations, Caccioppoli estimates and regularity. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(3), 767–807 (2016) Cavalcante, M., Huaroto, G.: The cubic nonlinear fractional schrödinger equation on the half-line. arXiv:1911.08307v1.pdf Carroll, R., Bu, Q.-Y.: Solution of the forced nonlinear Schrödinger (NLS) equation using PDE techniques. Appl. Anal. 41, 33–51 (1991) Cazenave, T., Weissler, F.B.: The Cauchy problem for the critical nonlinear Schrödinger equation in Hs. Nonlinear Anal. 14, 807–836 (1990) Cazenave, T., Weissler, F.B.: The Cauchy problem for the critical nonlinear Schrödinger equation in \(H^s\). Nonlinear Anal. 14, 807–836 (1990) Cho, Y., Hwang, G., Kwon, S., Lee, S.: Well-posedness and ill-posedness for the cubic fractional schrödinger equations. Discrete Contin. Dyn. Syst. 35, 2863–2880 (2015) Demirbas, S., Erdoğan, B., Tzirakis, N.: Existence and uniqueness theory for the fractional Schrödinger equation on the torus, Some topics in harmonic analysis and applications. 145-162, Adv. Lect. Math. (ALM), 34, Int. Press, Somerville, MA (2016) Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012) Dinh, V.D.: Well-posedness of nonlinear fractional Schrödinger and wave equations in Sobolev spaces. Int. J. Appl. Math., Academic Publications 31(4), 483–525 (2018). hal-01426761v2 Erdoğan, M.B., Tzirakis, N.: Regularity properties of the cubic nonlinear Schrödinger equation on the half-line. J. Funct. Anal. 233, 2539–2568 (2016) Hong, Y., Sire, Y.: On fractional Schrödinger equations in Sobolev space. Commun. Pure Appl. Anal. 14, 2265–2282 (2015) Holmer, J.: The initial-boundary value problem for the 1D nonlinear Schrödinger equation on the half-line. Differ. Integr. Equ. 18, 647–668 (2005) Holmer, J.: The initial-boundary value problem for the Korteweg-de Vries equation. Comm. Partial Differ. Equ. 31, 1151–1190 (2006) Holmer, J.: Uniform Estimates for the Zakharov System and the Initial-boundary Value Problem for the Korteweg-de Vries and Nonlinear Schrödinger Equations, PhD Tese, University of Chicago (2004) Jerison, D., Kenig, C.: The Inhomogeneous Dirichlet Problem in Lipschitz Domains. J. Funct. Anal. 130(1), 161–219 (1995) Kenig, C.E., Ponce, G., Vega, L.: Small solutions to nonlinear Schrödinger equations. Annales de l’I HP 10(3), 255–288 (1993) Laskin, N.: Fractional quantum mechanics. Phys. Rev. E 62, 3135–3145 (2000) Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E (3) 66, 056108, 7 (2002) Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298–305 (2000) Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal functions. Trans. Am. Math. Soc. 165, 207–226 (1972) Torchinsky, A.: Real-Variable Methods in Harmonic Analysis. Academic Press, San Diego (1986) Tsutsumi, M.: On global solutions to the initial-boundary value problem for the nonlinear Schrödinger equations in exterior domains. Comm. Partial Differ. Equ. 16, 885–907 (1991) Tsutsumi, M.: On smooth solutions to the initial-boundary value problem for the nonlinear Schrödinger equation in two space dimensions. Nonlinear Anal. 13, 1051–1056 (1989) Tsutsumi, Y.: Global solutions of the nonlinear Schrödinger equation in exterior domains. Comm. Partial Differ. Equ. 8, 1337–1374 (1983) Wang, B.: On the initial-boundary value problems for nonlinear Schrödinger equations. Adv. Math. (China) 29, 421–424 (2000)