Nonlinear elastic finite fracture mechanics: Modeling mixed-mode crack nucleation in structural glazing silicone sealants

Materials and Design - Tập 182 - Trang 108057 - 2019
Philipp L. Rosendahl1, Yves Staudt2, Ashley Schneider1, Jens Schneider3, W. Becker1
1Technische Universität Darmstadt, Fachgebiet Strukturmechanik, Franziska-Braun-Str. 7, Darmstadt 64287, Germany
2Ingenieurbüro Bräuer und Späh, Ludwig-Beck-Str. 8, Mannheim 68163, Germany
3Technische Universität Darmstadt, Institute of Structural Mechanics and Design, Franziska-Braun-Str. 3, Darmstadt 64287, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Peterson, 1938, Methods of correlating data from fatigue tests of stress concentration specimens, 179

Whitney, 1974, Stress fracture criteria for laminated composites containing stress concentrations, J. Compos. Mater., 8, 253, 10.1177/002199837400800303

Neuber, 1936, Theorie der technischen Formzahl, 7(6), 271

Waddoups, 1971, Macroscopic fracture mechanics of advanced composite materials, J. Compos. Mater., 5, 446, 10.1177/002199837100500402

Hashin, 1996, Finite thermoelastic fracture criterion with application to laminate cracking analysis, J. Mech. Phys. Solids, 44, 1129, 10.1016/0022-5096(95)00080-1

Sih, 1974, Strain-energy-density factor applied to mixed mode crack problems, Int. J. Fract., 10, 305, 10.1007/BF00035493

Lazzarin, 2001, A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp V-shaped notches, Int. J. Fract., 112, 275, 10.1023/A:1013595930617

Berto, 2014, Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches, Mater. Sci. Eng. R Reports, 75, 1, 10.1016/j.mser.2013.11.001

Taylor, 2007

Francfort, 1998, Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46, 1319, 10.1016/S0022-5096(98)00034-9

Tanné, 2018, Crack nucleation in variational phase-field models of brittle fracture, J. Mech. Phys. Solids, 110, 80, 10.1016/j.jmps.2017.09.006

Wu, 2018, A length scale insensitive phase-field damage model for brittle fracture, J. Mech. Phys. Solids, 119, 20, 10.1016/j.jmps.2018.06.006

Ortiz, 1999, Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis, Int. J. Numer. Methods Eng., 44, 1267, 10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7

Gasser, 2005, Modeling 3D crack propagation in unreinforced concrete using PUFEM, Comput. Methods Appl. Mech. Eng., 194, 2859, 10.1016/j.cma.2004.07.025

Ren, 2017, Dual-horizon peridynamics: a stable solution to varying horizons, Comput. Methods Appl. Mech. Eng., 318, 762, 10.1016/j.cma.2016.12.031

Clift, 2014, Next generation structural silicone glazing, J. Facade Des. Eng., 2, 137

Hagl, 2016, Development and test logics for structural silicone bonding design and sizing, Glas. Struct. Eng., 1, 131, 10.1007/s40940-016-0014-5

Ayatollahi, 2016, A new criterion for rupture assessment of rubber-like materials under mode-I crack loading: the effective stretch criterion, Adv. Eng. Mater., 18, 1364, 10.1002/adem.201600046

Heydari-Meybodi, 2017, Mixed-mode (I/II) failure assessment of rubber materials using the effective stretch criterion, Theor. Appl. Fract. Mech., 91, 126, 10.1016/j.tafmec.2017.05.001

Berto, 2015, A criterion based on the local strain energy density for the fracture assessment of cracked and V-notched components made of incompressible hyperelastic materials, Theor. Appl. Fract. Mech., 76, 17, 10.1016/j.tafmec.2014.12.008

Heydari-Meybodi, 2018, Rupture analysis of rubber in the presence of a sharp V-shape notch under pure mode-I loading, Int. J. Mech. Sci., 146–147, 405, 10.1016/j.ijmecsci.2018.08.008

Schänzel, 2013, Phase field modeling of fracture in rubbery polymers, Const. Model. Rubber VIII, 31, 335, 10.1201/b14964-61

Miehe, 2014, Phase field modeling of fracture in rubbery polymers. Part I: finite elasticity coupled with brittle failure, J. Mech. Phys. Solids, 65, 93, 10.1016/j.jmps.2013.06.007

Pipes, 1979, Notched strength of composite materials, J. Compos. Mater., 13, 148, 10.1177/002199837901300206

Leguillon, 2002, Strength or toughness? A criterion for crack onset at a notch, Eur. J. Mech. –A/Solids, 21, 61, 10.1016/S0997-7538(01)01184-6

Yosibash, 2006, A failure criterion for brittle elastic materials under mixed-mode loading, Int. J. Fract., 141, 291, 10.1007/s10704-006-0083-6

P. Cornetti, M. Mu noz-Reja, A. Sapora, A. Carpinteri, Finite fracture mechanics and cohesive crack model: weight functions vs. cohesive laws, Int. J. Solids Struct. ISSN 00207683, 10.1016/j.ijsolstr.2018.08.003.

Sapora, 2015, An improved finite fracture mechanics approach to blunt V-notch brittle fracture mechanics: experimental verification on ceramic, metallic, and plastic materials, Theor. Appl. Fract. Mech., 78, 20, 10.1016/j.tafmec.2015.04.004

Weißgraeber, 2015, Cracks at elliptical holes: stress intensity factor and finite fracture mechanics solution, Eur. J. Mech. - A/Solids, 55, 192, 10.1016/j.euromechsol.2015.09.002

Felger, 2017, Asymptotic finite fracture mechanics solution for crack onset at elliptical holes in composite plates of finite-width, Eng. Fract. Mech., 182, 621, 10.1016/j.engfracmech.2017.05.048

Talmon l’Armée, 2017, Nonlinear crack opening integral: mode mixity for finite cracks, Eng. Fract. Mech., 186, 283, 10.1016/j.engfracmech.2017.10.006

Felger, 2017, Mixed-mode fracture in open-hole composite plates of finite-width: an asymptotic coupled stress and energy approach, Int. J. Solids Struct., 122-123, 14, 10.1016/j.ijsolstr.2017.05.039

Leguillon, 2013, The strengthening effect caused by an elastic contrast –part I: the bimaterial case, Int. J. Fract., 179, 157, 10.1007/s10704-012-9787-y

Weißgraeber, 2013, Finite fracture mechanics model for mixed mode fracture in adhesive joints, Int. J. Solids Struct., 50, 2383, 10.1016/j.ijsolstr.2013.03.012

Hell, 2014, A coupled stress and energy criterion for the assessment of crack initiation in single lap joints: a numerical approach, Eng. Fract. Mech., 117, 112, 10.1016/j.engfracmech.2014.01.012

Stein, 2015, A model for brittle failure in adhesive lap joints of arbitrary joint configuration, Compos. Struct., 133, 707, 10.1016/j.compstruct.2015.07.100

Felger, 2019, Scaling laws for the adhesive composite butt joint strength derived by finite fracture mechanics, Compos. Struct., 208, 546, 10.1016/j.compstruct.2018.09.100

Catalanotti, 2013, A semi-analytical method to predict net-tension failure of mechanically fastened joints in composite laminates, Compos. Sci. Technol., 76, 69, 10.1016/j.compscitech.2012.12.009

Leguillon, 2015, Application of the coupled stress-energy criterion to predict the fracture behaviour of layered ceramics designed with internal compressive stresses, Eur. J. Mech. - A/Solids, 54, 94, 10.1016/j.euromechsol.2015.06.008

Rosendahl, 2017, Asymmetric crack onset at open-holes under tensile and in-plane bending loading, Int. J. Solids Struct., 113-114, 10, 10.1016/j.ijsolstr.2016.09.011

Li, 2018, A finite fracture model for the analysis of multi-cracking in woven ceramic matrix composites, Compos. Part B Eng., 139, 75, 10.1016/j.compositesb.2017.11.050

García, 2018, The effect of residual thermal stresses on transverse cracking in cross-ply laminates: an application of the coupled criterion of the finite fracture mechanics, Int. J. Fract., 211, 61, 10.1007/s10704-018-0276-9

García, 2019, Experimental study of the size effect on transverse cracking in cross-ply laminates and comparison with the main theoretical models, Mech. Mater., 128, 24, 10.1016/j.mechmat.2018.09.006

Hebel, 2010, Modelling brittle crack formation at geometrical and material discontinuities using a finite fracture mechanics approach, Eng. Fract. Mech., 77, 3558, 10.1016/j.engfracmech.2010.07.005

Doitrand, 2018, Comparison between 2D and 3D applications of the coupled criterion to crack initiation prediction in scarf adhesive joints, Int. J. Adhes. Adhes., 85, 69, 10.1016/j.ijadhadh.2018.05.022

Doitrand, 2018, 3D application of the coupled criterion to crack initiation prediction in epoxy/aluminum specimens under four point bending, Int. J. Solids Struct., 143, 175, 10.1016/j.ijsolstr.2018.03.005

Leguillon, 2018, What is the tensile strength of a ceramic to be used in numerical models for predicting crack initiation?, Int. J. Fract., 212, 89, 10.1007/s10704-018-0294-7

Weißgraeber, 2016, A review of finite fracture mechanics: crack initiation at singular and non-singular stress raisers, Arch. Appl. Mech., 86, 375, 10.1007/s00419-015-1091-7

Leguillon, 2017, Failure initiation at V-notch tips in quasi-brittle materials, Int. J. Solids Struct., 122-123, 1, 10.1016/j.ijsolstr.2017.05.036

ASTM Standard D412-16, 2016

EOTA, 2012

ISO 7743, 2017

Staudt, 2018, Failure behaviour of silicone adhesive in bonded connections with simple geometry, Int. J. Adhes. Adhes., 82, 126, 10.1016/j.ijadhadh.2017.12.015

Rosendahl, 2019, Equivalent strain failure criterion for multiaxially loaded incompressible hyperelastic elastomers, Int. J. Solids Struct., 166, 32, 10.1016/j.ijsolstr.2019.01.030

Felger, 2019, Predicting crack patterns at bi-material junctions: a coupled stress and energy approach, Int. J. Solids Struct., 164, 191, 10.1016/j.ijsolstr.2019.01.015

Weißgraeber, 2016, Crack nucleation in negative geometries, Eng. Fract. Mech., 168, 93, 10.1016/j.engfracmech.2016.02.045

Staudt, 2017, Proposal of a Failure Criterion of Adhesively Bonded Connections With Silicone

Cuntze, 2006, Failure conditions for isotropic materials, unidirectional composites, woven fabrics – their visualization and links, 1

Blatz, 1963, Application of finite elastic theory to the behavior of rubberlike materials, Rubber Chem. Technol., 36, 1459, 10.5254/1.3539651

Lindsey, 1967, Triaxial fracture studies, J. Appl. Phys., 38, 4843, 10.1063/1.1709232

Aït Hocine, 2011, Experimental and finite element investigation of void nucleation in rubber-like materials, Int. J. Solids Struct., 48, 1248, 10.1016/j.ijsolstr.2011.01.009

Drass, 2018, On cavitation in transparent structural silicone adhesive: TSSA, Glas. Struct. Eng., 3, 237, 10.1007/s40940-018-0061-1

Drass, 2018, Adhesive connections in glass structures–art I: experiments and analytics on thin structural silicone, Glas. Struct. Eng., 3, 39, 10.1007/s40940-017-0046-5

Podgórski, 1985, General failure criterion for isotropic media, J. Eng. Mech., 111, 188, 10.1061/(ASCE)0733-9399(1985)111:2(188)

Bigoni, 2004, Yield criteria for quasibrittle and frictional materials, Int. J. Solids Struct., 41, 2855, 10.1016/j.ijsolstr.2003.12.024

ASTM Standard D3433-99, 2012

BS Standard 7991, 2001

Schmandt, 2018, Effect of crack opening velocity and adhesive layer thickness on the fracture behaviour of hyperelastic adhesive joints subjected to mode I loading, Int. J. Adhes. Adhes., 83, 9, 10.1016/j.ijadhadh.2018.02.028

Rosendahl, 2019, Measuring mode I fracture properties of thick-layered structural silicone sealants, Int. J. Adhes. Adhes., 91, 64, 10.1016/j.ijadhadh.2019.02.012

Loh, 2018, An out-of-plane loaded double cantilever beam (ODCB) test to measure the critical energy release rate in mode III of adhesive joints, Int. J. Adhes. Adhes., 83, 24, 10.1016/j.ijadhadh.2018.02.021

Machalická, 2017, Adhesive joints in glass structures: effects of various materials in the connection, thickness of the adhesive layer, and ageing, Int. J. Adhes. Adhes., 72, 10, 10.1016/j.ijadhadh.2016.09.007

Wang, 2018, Shear behaviour of structural silicone adhesively bonded steel-glass orthogonal lap joints, J. Adhes. Sci. Technol., 0, 1

Moradi, 2013, Strength prediction of bonded assemblies using a coupled criterion under elastic assumptions: effect of material and geometrical parameters, Int. J. Adhes. Adhes., 47, 73, 10.1016/j.ijadhadh.2013.09.044

Wang, 1980, Initiation and growth of transverse cracks and edge delamination in composite laminates part 1. An energy method, J. Compos. Mater., 14, 71, 10.1177/002199838001400106

Krueger, 2004, Virtual crack closure technique: history, approach, and applications, Appl. Mech. Rev., 57, 109, 10.1115/1.1595677

Martin, 2008, Competition between deflection and penetration at an interface in the vicinity of a main crack, Int. J. Fract., 151, 247, 10.1007/s10704-008-9228-0

Müller, 2006, A hybrid method to assess interface debonding by finite fracture mechanics, Eng. Fract. Mech., 73, 994, 10.1016/j.engfracmech.2005.12.001

García, 2015, A model for the prediction of debond onset in spherical-particle-reinforced composites under tension. Application of a coupled stress and energy criterion, Compos. Sci. Technol., 106, 60, 10.1016/j.compscitech.2014.10.010

Doitrand, 2019, Comparison between cohesive zone and coupled criterion modeling of crack initiation in rhombus hole specimens under quasi-static compression, Theor. Appl. Fract. Mech., 99, 51, 10.1016/j.tafmec.2018.11.007

Sapora, 2018, Crack onset and propagation stability from a circular hole under biaxial loading, Int. J. Fract., 214, 97, 10.1007/s10704-018-0315-6

Leguillon, 2013, The strengthening effect caused by an elastic contrast–art II: stratification by a thin stiff layer, Int. J. Fract., 179, 169, 10.1007/s10704-012-9785-0

ASTM Standard C1401-14, 2014

Neff, 2016, Geometry of logarithmic strain measures in solid mechanics, Arch. Ration. Mech. Anal., 222, 507, 10.1007/s00205-016-1007-x