Nonlinear effects in chromophore doped sol-gel photonic materials

Journal of Sol-Gel Science and Technology - Tập 9 - Trang 169-181 - 1997
X. D. Sun1, X. J. Wang1,2, W. Shan3, J. J. Song3, M. G. Fan4, E. T. Knobbe1
1Department of Chemistry, University Center for Laser Research, Oklahoma State University, Stillwater
2Department of Physics, Georgia Southern University, Statesboro
3Department of Physics, University Center for Laser Research, Oklahoma State University, Stillwater
4Institute of Photographic Chemistry, Chinese Academy of Sciences, Beijing, P.R. China

Tóm tắt

Linear and nonlinear optical effects have been studied in chromophore-doped gel hosts. Tetra-4-sulfonatophenylporphyrinatocopper(II) (CuTPPS), and 1,3-dihydro-1,3,3-trimethylspiro[2H-indole-2,3′-[3H]-naphth[2,1-b][1,4]oxazine] (SP spirooxazine) species were entrapped within porous aluminosilicate hosts. Optical limiting effects and radiative up-conversion behavior in the CuTPPS-doped materials are described, and a six-level model is proposed based on experimental findings. Spirooxazine-containing specimens exhibiting photochromic effects were prepared, and cw and time-resolved spectroscopy methods are used to assess excited state band structures and the nature of guest-host interactions in the resultant gels.

Tài liệu tham khảo

J.C. Pouxviel, J.P. Boilot, A. Dauger, and L. Huber, inBetter Ceramics Through Chemistry II, edited by C.J. Brinker, D.E. Clark, and D.R. Ulrich (Materials Research Society, Pittsburgh, 1986), p. 269. J.C. Pouxviel, J.P. Boilot, J.P. Lecomte, and A. Dauger, J. Phys. Paris48, 921 (1987). L.M. Yates, III, X.-J. Wang, and E.T. Knobbe, J. Sol-gel. Sci. Technol.2, 745 (1994). D. Preston, J.C. Pouxviel, T. Novinson, W. Kaska, B. Dunn, and J.I. Zink, J. Phys. Chem.94, 4167 (1990). X.-J. Wang, L.M. Yates, III, and E.T. Knobbe, inSol-Gel Optics III, edited by J.D. Mackenzie,Proc. SPIE 2288, 264 (1994). B.J. Justus, Z.H. Kafafi, and A.L. Huston, Opt. Lett.18, 1603 (1993). G.S. He, G.C. Xu, P.N. Prasad, B.A. Reinhardt, J.C. Bhatt, and A.G. Dillard, Opt. Lett.20, 435 (1995). B.J. Justus, A.L. Huston, and A.J. Campillo, Appl. Phys. Lett.63, 1483 (1993). C.J. Herbert, W.S. Capinski, and M.S. Malcuit, Opt. Lett.17, 1037 (1992). M. Sheik-Bahae, A.A. Said, D.J. Hagan, M.J. Soileau, and E.W. Van Stryland, Opt. Eng.30, 1228 (1991). L.W. Tuff and T.F. Boggess, Prog. Quantum Electron.17, 299 (1993). See, e.g., Nonlinear Optical Materials for Switching and Limiting, edited by M.J. Soileau,Proc. SPIE 2229 (1994). S. Kalluri, Y.Q. Shi, W.H. Steier, Z.X. Yang, C.Z. Xu, B. Wu, and L.R. Dalton, Appl. Phys. Lett.65, 2651 (1994). Y. Zhang, P.N. Prasad, and R. Burzynski, Chem. Mater.4, 851 (1992). H.W. Oviatt, K.J. Shea, S. Kalluri, Y.Q. Shi, W.H. Steier, and L.R. Dalton, Chem. Mater.7, 493 (1995). P.D. Fuqua, K. Mansour, A. Alvarez, Jr., S.R. Marder, J.W. Perry, and B. Dunn, ibid.. G.J. Gall, T.A. King, S.N. Oliver, C.A. Capozzi, A.B. Seddon, C.A.S. Hill, and A.E. Underhill, in Sol-Gel Optics III, edited by J.D. Mackenzie,Proc. SPIE 2288, 372 (1994). S. Kobayashi, K. Kikuchi, and H. Kokubun, Chem. Phys.27, 399 (1978). G. Brown,Photochromism (Wiley-Interscience, New York, 1971). C. Bohne, M. G Fan, Z.J. Li, Y.C. Liang, J. Lusztyk, and J.C. Scaiano, J. Photochem. Photobiol. A: Chem.66, 79 (1992). A. Zelichenok, F. Buchholtz, J. Ratner, E. Fischer, and V. Krongauz, J. Photochem. Photobiol. A: Chem.77, 201 (1994). H. Durr and H. Bouas-Laurent,Photochromism: Molecules and Systems (Elsevier, Amsterdam, 1990). D. Levy, S. Einhorn, and D. Avnir, J. Non-Cryst. Solids113, 137 (1989). D. Levy and D. Avnir, J. Phys. Chem.92, 4734 (1988). N.Y.C. Chu, Can. J. Chem.61, 300 (1983). J.W. Perry, L.R. Khundkar, D.R. Coulter, D. Alvarez, Jr., S.R. Marder, T.H. Wei, M.J. Sence, E.W. Van Stryland, and D.J. Hagan, inOptical Molecules for Nonlinear Optics and Photonics, NATO ASI, Ser. E: Applied Physics, edited by J. Messier, F. Kajzar, and P. Prasad (Kluwer Academic, Dordrecht, 1991), vol. 194, p. 639. H. Eilers, K.R. Hoffman, W.M. Dennis, S.M. Jacobsen, and W.M. Yen, Appl. Phys. Lett.61, 2958 (1992). S. Tobita, Y. Kaizu, H. Kobayashi, and I. Tanaka, J. Chem. Phys.81, 2962 (1984). S. Tobita and I. Tanaka, Chem. Phys. Lett.96, 517 (1983). G.F. Stelmakh and M.P. Tsvirko, Opt. Spectrosc. (USSR)48, 105 (1980). R.L. Ake and M. Gouterman, Theoret. Chim. Acta15, 20 (1969). M. Gouterman, inThe Porphyrins, Physical Chemistry, Part A, edited by D. Dolphin (Academic Press, New York, 1978). p. 1. J.H. Brannon and D. Magde, J. Am. Chem. Soc.102, 62 (1980). M. Nogami and T. Sugiura, J. Mater. Sci. Lett.12, 1544 (1993). C. Bohne, M.G. Fan, Z.J. Li, J. Lusztyk, and J.C. Scaiano, J. Chem. Soc. Chem. Commun.9, 571 (1990). A.S. Dvornikov, J. Malkin, and P.M. Rentzepis, J. Phys. Chem.98, 6746 (1994). M.G. Fan, Y.F. Ming, Y.C. Liang, X.Y. Zhang, S. Jin, S.D. Yao, and N.Y. Lin, J. Chem. Soc. Chem. Commun.4, 1376 (1994). D. Levy, New J. Chem.18, 1073 (1994). H. Gorner, J. Photochem.19, 343 (1982). S.K. Chattopadhyay and P.K. Das, Chem. Phys. Lett.82(2), 145 (1982). R.A. Goldbeck, A.J. Twarowski, E.L. Russell, J.K. Rice, R.R. Birge, E. Switkes, and D. Kliger, J. Chem. Phys.77(7), 3319 (1982). T. Tahara and H. Hamaguchi, Chem. Phys. Lett.234, 275 (1995). M.T. Allen, L. Miola, and D.G. Whitten, J. Phys. Chem.91, 6099 (1987).