Nonlinear dynamics of continuous-variable quantum games with bounded rationality

Zhe Yang1,2, Qingbin Gong2,1
1Key Laboratory of Mathematical Economics (SUFE), Ministry of Education, Shanghai, People’s Republic of China
2School of Economics, Shanghai University of Finance and Economics, Shanghai, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Meyer, D.A.: Quantum strategies. Phys. Rev. Lett. 82, 1052–1055 (1999)

Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83, 3077–3080 (1999)

Benjamin, S.C., Hayden, P.M.: Multiplayer quantum games. Phys. Rev. A 64, 030301 (2001)

Li, H., Du, J., Massar, S.: Continuous-variable quantum games. Phys. Lett. A 306, 73–78 (2002)

Zhou, J., Ma, L., Li, Y.: Multiplayer quantum games with continuous-variable strategies. Phys. Lett. A 339, 10–17 (2005)

Du, J., Li, H., Ju, C.: Quantum games of asymmetric information. Phys. Rev. E 68, 016124 (2003)

Lo, C.F., Kiang, D.: Quantum Stackelberg duopoly. Phys. Lett. A 318, 333–336 (2003)

Piotrowski, E.W., Sladkowski, J.: Quantum market games. Physica A 312, 208–216 (2002)

Hidalgo, E.G.: Quantum replicator dynamics. Physica A 369, 393–407 (2006)

Lo, C.F., Kiang, D.: Quantum Bertrand duopoly with differentiated products. Phys. Lett. A 321, 94–98 (2004)

Agiza, H.N.: Explicit stability zones for Cournot games with 3 and 4 competitors. Chaos Solitons Fractals 9, 1955–1966 (1998)

Puu, T.: The chaos in duopolies revisited. J. Econ. Behav. Org. 37, 385–394 (1998)

Agiza, H.N.: On the stability, bifurcations, chaos and chaos control of Kopel map. Chaos Solitons Fractals 11, 1909–1916 (1999)

Puu, T.: Attactors, Bifurcations and Chaos: Nonlinear Phenomena in Economics. Springer, Berlin (2000)

Holyst, J.A., Urbanowicz, K.: Chaos control in economical model by time-delayed feedback method. Physica A 287, 587–598 (2000)

Yassen, M.T., Agiza, H.N.: Analysis of a dupoly game with delayed bounded rationality. Appl. Math. Comput. 138, 387–402 (2003)

Agiza, H.N., Elsadany, A.A.: Nonlinear dynamics in the Cournot duopoly game with heterogeneous player. Physica A 320, 512–524 (2003)

Agiza, H.N., Elsadany, A.A.: Chaotic dymamics in nonlinear duopoly game with heterogeneous players. Appl. Math. Comput. 149, 843–860 (2004)

Elsadany, E.M., Agiza, H.N., Elsadany, A.A.: Analysis of nonlinear triopoly game with heterogeneous players. Comput. Math. Appl. 57, 488–499 (2009)

Brock, W.A., Hommes, C.H.: Heterogeneous expectations and routes to chaos in a simple asset pricing model. J. Econ. Dyn. Control 22, 1235–1274 (1998)

Bishchi, G.I., Kopel, M.: Equilibrium selection in an nonlinear duopoly game with adaptive expectations. J. Econ. Behav. Org. 46, 73–100 (2001)

Den-Hann, W.J.: The importance of the number of different agents in a heterogeneous asset-pricing model. J. Econ. Dyn. Control 25, 721–746 (2001)

Du, J., Li, H., Xu, X., Zhou, X., Han, R.: Phase-transition-like behaviour of quantum games. J. Phys. A Math. Gen. 36, 6551–6562 (2003)

de Ponte, M.A., Santos, A.C.: Adiabatic quantum games and phase-transition-like behavior between optimal strategies. Quantum Inf. Process. 17, 149 (2018)

Elaydi, S.N.: An Introduction to Difference Equations. Springer, Berlin (1996)